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Abstract 

 
  The purpose of this research is to determine an appropriate method for 

estimating cargo airdrop collateral damage risk.  Specifically, this thesis answers the 

question: How can mission planners accurately predict airdrop collateral damage risk?  

The question is answered through a literature review and a thorough examination of a 

data set of real world airdrop scoring data.  The data were examined to determine critical 

factors that affect airdrop error risks as well as to determine the characteristics of airdrop 

error patterns.  Through this research it was determined that bivariate normal 

distributions with parameters of 0, 0, , 0 and  &  pairs determined 

by empirical data are appropriate for modeling cargo airdrop errors patterns.  Collateral 

risk is estimated by summing numerical integrations of a fit bivariate normal distribution 

for each drop type across rectangular representations of drop field objects in the field of 

concern.  Airdrop altitude and chute type are found to make a statistically significant 

difference in airdrop error patterns while airdrop aircraft type does not appear to have a 

significant effect.  This research methodology is implemented in an EXCEL spreadsheet 

tool that can be easily used by airdrop mission planners including an extension, requested 

by the research sponsors, to handle bundled drops that fall in a linear spread.    
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ESTIMATING CARGO AIRDROP COLLATERAL DAMAGE RISK 
 
 

I.  Introduction   
 
 

Overview 

 This chapter introduces the reader to what lies ahead in this thesis.  This thesis 

develops and implements a methodology that can be used by U.S. Air Force to develop a 

reliable collateral damage risk analysis tool for airdrop mission planning purposes.  First 

this chapter discusses background information on the airdropping of cargo.  Next it 

covers the problem statement that this thesis targets.  Then it relates the area of airdrop 

planning this thesis uses as its research focus followed by the research objectives.  Finally 

it conveys the research assumptions and limitations that were necessary for the research 

problem to become tractable.  

Background 

 Airdrop accuracy has been an ever-present challenge to military planners since 

the early days of resupply via aircraft airdrop.  That is; how can we ensure that 

airdropped supplies are received by our ground forces and not the enemy like some of our 

early attempts during the Vietnam War (Tokar, 1998).  During this and other 

engagements throughout history, techniques and technologies have been developed that 

have consistently increased airdrop accuracy and/or improved aircraft survivability 

against enemy fire.  Techniques such as high-velocity airdrops for rugged cargo minimize 

the effects of winds on airdrop trajectory and maintain accuracy while allowing for 

higher release altitudes and increase aircraft survivability.  Reefing techniques and 

equipment also allow for airdrops to be released from higher altitudes while maintaining 
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the accuracy of lower altitude airdrops again increasing aircrew safety. Reefing allows 

for an airdrop to begin descent at high velocity for target accuracy and then switch to low 

velocity in mid-descent to increase cargo survivability.  This allows aircraft to drop cargo 

from higher altitudes with the accuracy of a lower altitude drop.  Many of these 

techniques and technologies were born out of operational necessity.  One of the most 

successful recent examples of accuracy improvement is the Joint Precision Airdrop 

System (JPADS). 

 The JPADS system uses a steerable parachute and an Airborne Guidance Unit 

(AGU) to control the cargo’s descent and guide it to its Joint Desired Point of Impact 

(JDPI) (McGowen, 2006).  The JPADS system offers many advantages over traditional 

airdrops: increased accuracy, reduced drop zone (DZ) size requirements, standoff cargo 

release, improved aircraft survivability, and immediate feedback on airdrop accuracy 

(Benney et al, 2005).  One of the few recognized disadvantages of the JPADS system is 

the cost of the system itself relative to traditional “dumb” airdrops.  In order to keep costs 

down recovering and reusing retrograde airdrop items is necessary, though not always 

feasible (Benney et al, 2005).  JPADS is an important and necessary capability but its 

costs prevent it from solving some of the problems associated with resupply via airdrop.  

As a result of the significant cost and other factors JPADS cannot always be used for 

airdrops. 

With the majority of combat airdrops still being accomplished with the relatively 

“dumb” airdrop techniques, planners must choose carefully when deciding on a JPDI and 

DZ.  If it is too far from the point of use, recovery personnel could be exposed to enemy 

fire while recovering the cargo.  If it is too close to friendly forces the risk of hitting 
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collateral hazards or friendly forces with cargo weighing several tons traveling at speeds 

of over 50 feet per second may become too great.  How do mission planners know how 

close is too close?  What is the chance that the cargo will impact a collateral object inside 

the DZ?  These are some of the answers this thesis attempts to provide. 

 

Problem Statement  

 Airdrop planners are asked to make decisions during mission planning that 

sometimes require a tradeoff between risk of hitting collateral objects and the distance 

from the airdrop cargo’s point of use.  This thesis aims to aid in the decision making 

process by providing a methodology and mission planning tool that airdrop planners can 

use to accurately predict airdrop collateral damage risk.  This leads us to the problem 

statement for this thesis:   

 

How can mission planners accurately predict airdrop collateral damage risk? 

 

Research Focus  

 This research will examine recent airdrop score data collected from real world 

airdrops to assess factors that affect airdrop accuracy and characterize those effects.  

Airdrop scores are assigned after each operational airdrop by the personnel collecting the 

cargo from the DZ.  During this scoring process a clock position relative to the DZ axis 

and a distance from the center of the DZ (JDPI) are recorded.  This data is then reported 

to higher headquarters.  These operational airdrop score data are the most reliable 

information we have on the current operational accuracy of cargo airdrops.  They also 
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represent the errors in the current models used in calculating computed air release points 

(CARP) for airdrop cargo, CARP calculation errors or other uncontrollable errors. 

There are many factors that affect airdrop accuracy such as aircraft altitude, 

speed, direction of travel, the timing of the release of cargo, the location of the cargo 

release, winds, cargo weight, number of chutes and type of parachutes used, etc.  These 

factors have been studied and analyzed extensively and are taken into account when 

determining CARPs.  But what happens after you have used the latest techniques and 

technology to determine the best known time and place in three dimensional space to 

release an airdrop, but the airdrop still misses its target?  These errors are normal and are 

to be expected from any model.  This thesis will describe these errors and characterize 

them in order to develop a method to evaluate risk. 

There are and will always be some degree of errors associated with an airdrop. 

What happens when the pilot flies the aircraft one-half of a degree off from the DZ axis?  

What happens if the cargo is released one-half of a second early or late?  What happens if 

the winds suddenly shift direction and/or velocity?  The cargo will not hit exactly where 

it was intended to land.  It will miss in some direction and some distance from the JPDI.  

These misses can be described in relation to the DZ axis as an ordered pair of (x,y) 

coordinates.  A large enough collection of these data can provide the basis to describe 

risk around a JPDI. 

What this thesis does is examine the airdrop (x,y) data to determine where the 

cargo actually lands in relation to where it was intended to land.  What this study does not 

do is attempt to determine why the cargo missed the JPDI in the first place. The airdrop 

scores provided daily by operational units provide up-to-date information about the 
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current accuracy and two-dimensional distributional properties of these operational 

airdrops.  By analyzing the data as a whole and by breaking down the data by airdrop 

method, altitude, and delivery aircraft we can gain useful insight into how far from the 

JPDI and in what direction relative to the DZ axis an airdrop will likely land.  By 

understanding the two-dimensional probability miss distribution airdrops we can gain 

insight as to where collateral objects should and should not be located relative to a JPDI 

to minimize risk. 

 

Research Objectives 

 This thesis has two main objectives.  The first objective is to describe the two-

dimensional distribution of airdrop errors through a literature review and by analyzing 

recent operational airdrop score data.  Once the two-dimensional distribution of the errors 

can be adequately described, this description can be used to predict the risks associated 

with collateral objects being located in specific locations in relation to the JPDI and DZ 

axis.  It would be simple to assume that an object located from a JPDI is as likely to be 

struck by an errant airdrop if it were 100 feet before an airdrop as if it were 100 feet to 

the right, but this thesis will show that the data suggests otherwise. 

The second objective is to develop an accessible planning tool that enables 

airdrop planners to accurately gauge the risk of an airdrop striking collateral object 

concerns near a JPDI.  This planning tool will require the location of the collateral 

object(s) in relation to the DZ axis and JPDI.  Additionally, the dimensions of those 

objects would need to be known as well.  This planning tool will also need to account for 

any known factors that change the distribution of an airdrop misses of a JPDI.  The 
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objective of the planning tool will be for it to receive inputs from a mission planner and 

for the tool to provide an output to that mission planner.  This output will be the 

probability of an airdrop striking a collateral object(s) near a JPDI.  This probability can 

then be used as a decision aide in determining if the chosen JPDI is acceptable. 

 

Assumptions/Limitations 

 There are a number of assumptions that were necessary to accomplish this 

research.  Some of these assumptions were required because of the nature of the data and 

some were made to make the research tractable for this researcher.  Some of these 

assumptions may become the “Areas for Future Research” in Chapter 6 of this thesis.   

 

Assumptions: 

 The data we have are the most accurate available on operational airdrop errors. 

When these data are analyzed and a two-dimensional distribution is fit to them, 

the results can be used to gauge the risk of striking collateral objects.   

 The current airdrop models used to determine the computed aerial release points 

for airdrops are the most accurate available.  In addition the errors from these 

models result in the average airdrop hitting the JPDI.  In other words, there is no 

systematic problem with the airdrop models currently in use to determine aerial 

release points.   

 The earth and collateral objects are flat.  That is, for the purposes of this research 

the relative elevation of the drop zone and the height of collateral objects & 

elevations of areas inside the DZ have no bearing on the probability of an airdrop 
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striking them.  This is of course not the case in practice.  It stands to reason that 

when an airdrop is released towards an upward sloping hill it will have a tendency 

to land shorter than if the terrain where level or downward sloping.  Other 

derivations in the long, left and right directions seem reasonable as well.  

Additionally, height of collateral objects will have an impact on the probability of 

an airdrop striking them.  An object that is 25 x 25 feet and 10 feet tall would be 

less likely to be struck than an object with the same footprint and 100 feet tall 

located in the same space on the DZ.  Unfortunately due to data constraints this 

cannot be accounted for. 

Limitations: 

 Currently airdrops are scored by ground personnel at the DZ who report the 

location of the airdrop in relation to the JPDI with a clock position and a distance only, 

not as a relative (x,y) coordinate.  For example, if an airdrop lands 100 yards short of the 

JPDI along the DZ axis the drop score would be recorded as 100 yards at 6 o’clock.  This 

practice leads to estimation of the true angle into one of only 12 out of the 360°’s of a 

circle surrounding the JPDI.  This makes estimating the true two-dimensional distribution 

based on this data more difficult and therefore assumptions about the true distribution 

between these clock positions must be made.  In this thesis the data as presented will be 

analyzed to determine best estimates of the parameters of a known two-dimensional 

distribution.  This known two dimensional distribution will be used to estimate collateral 

damage risk. 
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 The data that has been collected does not give information about the elevation 

changes in the area surrounding the JPDI.  As discussed earlier these elevation changes 

have an effect on the distance an airdrop lands but cannot be accounted for due to the 

lack of information.  This data limitation leads to the earlier assumption about the earth 

being flat for the purposes of this research. 

Summary 

 This research aims to answer the question “How can mission planners accurately 

predict airdrop collateral damage risk?”  It will do so by first conducting a thorough 

literature review and then providing an accurate assessment of the distribution of airdrops 

around their respective aimpoints using scoring data from recent real world airdrops.  

This literature review and airdrop data assessment will then become the basis for 

developing an accessible and flexible tool for use by mission planners.  The objective of 

this tool will be to provide a collateral damage risk probability output given a minimum 

set of inputs by the user that affect that risk.  These factors could be the location and size 

of collateral objects in a drop zone, the height from which an airdrop is released or the 

type of airdrop chutes used. 

 



9 
 

II. Literature Review 
 

The History of Airlift 

History has shown that the logistical resupply of military forces is a critical 

component to the success or failure of operations.  Of course, the most efficient and cost 

effective methods are usually preferred.  Typically, sea and ground transportation are 

used before airlift is considered for these reasons.  There have been times in history 

where these were no longer acceptable making airlift the only remaining option. 

After the defeat of Germany in World War II the country was divided into four 

separate sectors.  Each sector was controlled by one of the allied nations: the United 

States, France, Great Britain, and the Soviet Union.  The capitol city of Berlin resided 

within the Soviet sector but was itself divided into two zones with the western half 

controlled by the Soviets and the eastern half controlled by the remaining western allied 

countries.  Political tensions between the Soviet Union and the western allies reached a 

breaking point when on June 22, 1948 the Soviet controlled land-based resupply routes 

where halted by order of the Soviet leader Joseph Stalin.  Some in the U.S. wished to 

force the issue and use military soldiers to escort the supply convoys but there was a 

difficult but peaceful option to consider, aerial resupply.  Through careful planning and 

strictly adhered to execution policies the allies were able to supply all of the basic needs 

of the eastern half of Berlin using strictly airlift.  The Soviets finally relented on May 12, 

1949 and reopened the roads into eastern Berlin.  Their attempt to rid Berlin of western 

Allied presence had only resulted in their embarrassment.  By the official end of the 

operation the allies had provided more than 2.3 million tons of cargo using more than 

277,685 flights to accomplish the task.  During the operation, known in the U.S. as 
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“Operation Vittles” aircraft took off and landed from Berlin every three minutes in highly 

synchronized around the clock operations.  Typical cargo included coal, food, medical 

supplies, and industrial supplies and equipment.  One interesting cargo type was 

memorable not only for its type but also its method of delivery.  Pilot Gail Halvorsen 

came to be known as the “Candy Bomber” for his crews airdropping of their candy 

rations using handkerchiefs as parachutes (Feltus, 2007).   

Khe Sanh 

 Just as sea and ground transportation are preferred logistical methods over airlift, 

conventional airlift is preferred over airdrops.  There have been numerous examples 

throughout history where airdrops were the only option and through these experiences the 

modern methods of airdrop have been developed.  As the saying goes, “Necessity is the 

mother of invention.” 

As early as 1940 the U.S. Army identified the need, developed the techniques and 

procedures, and began purchasing the necessary equipment to conduct airdrop operations 

(Tokar, 1998).  In his monograph “Provide by Parachute: Airdrop in Vietnam, 1954-

1972”, Tokar relates the impact that airdrop logistics had during three battles in Vietnam: 

Dien Bien Phu, Khe Sanh, and An Loc.  In it he discusses how the French outpost at Dien 

Bien Phu was lost despite aerial resupply efforts, how the battle of Khe Sanh proved the 

necessity of airdrop capabilities and how U.S. aerial resupply efforts were critical to the 

success of the Army of the Republic of Vietnam against the North Vietnamese siege of 

the city of An Loc in 1972. 

 The Khe Sanh Combat Base was located in the northwest corner of South 

Vietnam near the North Vietnamese supply route known as the “Ho Chi Minh Trail”.  
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Khe Sanh had approximately 7,000 soldiers assigned to it and in late November 1967 it 

appeared that the North Vietnamese Army (NVA) was preparing for an attack on it.  The 

U.S. military leadership felt that aerial resupply of the soldiers there was feasible in case 

of a NVA attack.  On 21 January, 1968 the NVA attacked Khe Sanh and its outposts.  

The aerial resupply commenced using mainly C-130 Hercules and C-123 Provider airlift 

aircraft.  On February 10, a Marine C-130 was hit by NVA fire and destroyed; as a result 

the U.S. suspended landings of the C-130 at Khe Sanh.   This event led to a change in 

tactics for aerial resupply.  The Air Force began using its Low Altitude Parachute 

Extraction System (LAPES) and the Ground Proximity Extraction System (GPES) for 

delivering rugged supplies like food and ammunition.  LAPES uses parachutes to extract 

cargo pallets from the aircraft at extremely low altitudes while the GPES uses a ground-

based hook system to pull the cargo from the aircraft.  Although weather conditions 

prevented the full employment of these systems, by the end of the attack 67 successful 

LAPES/GPES airdrop resupply missions had been conducted.  The remaining rugged 

cargo was dropped using traditional paradrop techniques while delicate cargo was 

delivered with C-123’s landing on the treacherous runway.  The NVA continued their 

attack on Khe Sanh until 30 March and a land resupply route was not established until 8 

April.  The aerial resupply of Khe Sanh was critical to saving the lives of the nearly 7,000 

soldiers stationed there and for assisting to repel the NVA attack.  The airlift averaged 

235 tons of cargo delivered per day for a total of 17,100 tons over the 77 day siege 

(Vaughan 2000).  This battle demonstrated that given the right conditions, aerial resupply 

of a combat force was possible, even for extended periods of time. 
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An Loc 

During the NVA siege of the city of An Loc in 1972 the U.S. capability to 

resupply via airdrop was once again put to the test.  During this time frame the U.S. was 

in its “Vietnamization” phase of the conflict.  During this phase the U.S. role in Vietnam 

was considered non-combat.  So when the NVA began a siege of the South Vietnamese 

city of An Loc U.S. support of the Army of the Republic of Vietnam (ARVN) forces was 

mainly logistical.  The NVA had cut off all supply lines and the only plausible method of 

resupply was via airdrop.  During the initial phases of the siege low altitude resupply was 

used but due to heavy aircraft damage and losses new techniques were developed.  These 

included two stage parachutes, high-velocity airdrops, and high-altitude low-opening 

methods.  These methods all allowed for increased accuracy from altitudes that were 

outside of the enemy anti-aircraft artillery range.  By the end of the siege, equipment, 

tactics and procedures had improved to the point that greater than 95% of the airdrops 

were landing within the drop zones boundaries.  This siege showed the need for a reliable 

and accurate high-altitude airdrop system and spurred on its development (Tokar, 1998).   

Types of Airdrops 

There are four types of airdrops used by the US Air Force: guided (also called 

smart airdrops), low-velocity, high-velocity, and free fall (AFI 11-231, 2005).  For 

guided airdrops the cargo load is guided to the airdrop joint desired point of impact 

(JPDI) typically using a parachute control and guidance system connected to the load.  

One of the more common systems in use today is the Joint Precision Airdrop System 

(JPADS).  This system enables airdrop loads to be dropped from high altitudes out of the 

range of the enemy with high accuracy.  Although the exact accuracy of JPADS is 
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classified it is accurate enough that cargo drop zone requirements are drastically reduced 

when the system is used. An additional benefit of JPADS is that the load can be released 

vertically offset from the Drop Zone (DZ) and can be guided during descent enabling the 

aircraft greater survivability against enemy defenses.   

With low-velocity airdrops there is no guidance system.  Typically, parachutes are 

used to slow the descent of the airdrop load and to reduce the impact velocity.  Low-

velocity airdrops are used for more delicate cargo that would not be capable of 

withstanding the more accurate high-velocity airdrop.   

For high-velocity airdrops a smaller parachute or parafoil is used to stabilize the 

descent of the airdrop.  These smaller parachutes do not slow the descent by the same 

amount as the low-velocity parachutes, but they ensure that the load impacts the ground 

at the proper angle.  High-velocity airdrops are affected less by the winds and are 

typically more accurate than low-velocity airdrops if all other factors remain equal. The 

cargo dropped with this method is more rugged and can withstand the higher force of 

impact.      

With free fall airdrops the load is released from the aircraft with no parachutes.  

This type of airdrop is typically used for dropping propaganda leaflets over enemy 

territory.  

Methods of Airdrops  

With all four of the above types of airdrops there are several methods for 

releasing the cargo from the aircraft for its descent to the JPDI: extraction, gravity and 

door bundle drops.  Extraction parachutes are smaller chutes that are deployed to pull the 

load from the aircraft on its system of floor rollers.  Gravity airdrops are when the pilot 
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changes the angle of the aircraft such that gravity pulls the load from the aircraft.  Finally 

the cargo load can simply be pushed out of the aircraft manually called a door bundle 

drop (AFI 11-231, 2005). 

Types of Parachutes 

  There are two basic categories of parachutes that the US Air Force uses: 

personnel and cargo; since cargo airdrops are the focus of this thesis we will focus on the 

latter.  In this section we will introduce and give general information about the most 

common cargo parachute types in use today by the US Air Force.  Air Force Instruction 

(AFI) 11-231 Computed Air Release Point Procedures lists 9 main types of equipment 

parachutes.  They are listed as G-11A, G-11B, G-11C, G-12D, G-12E, G-13, G-14, 12’ 

High Velocity, 22’ High Velocity, and the 26’ High Velocity.  The G-series parachutes 

are generally used for low-velocity low altitude airdrops and the 12’, 22’, and 26’ high-

velocity parachutes are generally used for high-velocity high altitude airdrops.  The 

ballistics of different types of parachutes varies. Each parachute is designed for a specific 

purpose and has its own peculiar characteristics (AFI 11-231, 2005).  As a result airdrops 

using different chutes behave differently. 

Airdrop Platforms 

 There are three main airdrop platforms in use by the US Air Force today.  They 

are the C-130 Hercules, the C-17 Globemaster III, and the C-5 Galaxy.  The C-130 

Hercules primarily performs the tactical portion of the airlift mission. The aircraft is 

capable of operating from rough, dirt strips and is the prime transport for air dropping 

troops and equipment into hostile areas.  The C-130E & H variants can carry 6 standard 

pallets of cargo or 16 Container Delivery System (CDS) bundles and the newer stretched 
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version of the C-130J can carry 8 standard pallets of cargo or 24 CDS bundles.  The C-17 

Globemaster III is capable of rapid strategic delivery of troops and all types of cargo to 

main operating bases or directly to forward bases in the deployment area. The C-17 can 

also perform tactical airlift and airdrop missions and can carry 18 standard pallets of 

cargo or 40 CDS bundles.  The C-5 Galaxy is one of the largest aircraft in the world and 

the largest airlifter in the US Air Force inventory. The C-5 can carry more than any other 

airlifter. It has the ability to carry 36 standard pallets. (Factsheets, 2010)   

Airdrop Errors 

 Airdrop errors occur when an airdrop does not land at its intended point of impact 

(PI).  These errors can be described by a distance from the PI and an angle with respect to 

the drop zone (DZ) axis or by (x,y) coordinates.  These errors can be caused by problems 

with the computed air release point, pilot error, crew error or any number of other causes. 

The calculation of a CARP takes in account many factors to determine the optimal 

location in the air to release an airdrop from the aircraft.  A cargo release at this location 

should result in the cargo landing at the intended PI.  Small errors in the factors listed 

below (and others like those in Figure 2.1) can result in the cargo missing its intended PI 

(Kogler, 1989).   

 drop zone conditions  

 ballistics of the cargo  

 weight of the load  

 DZ elevations  

 wind and other meteorological conditions  
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Other minor errors by the pilot, loadmaster, etc. can contribute as well.  All of these 

deviations would be very difficult to predict individually.   But the results of these 

Figure 2.1: CARP Diagram (AFI 11-231, 2005) 
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deviations should be quantifiable when real-world airdrop accuracy data is analyzed.  

These deviations can be summarized as the actual PI distance to the intended PI and 

angle from the DZ axis with respect to the DZ axis.  This information can be plotted two-

dimensionally to gain insight into the typical error patterns.  One method of describing an 

error pattern is determining if any known frequency distributions can suitably fit the 

empirical data. 

Fitting Frequency Distributions 

 A random variable assumes numerical values associated with the random 

outcomes of an experiment, where one (and only one) numerical value is assigned to each 

sample point (McClave, 2000).  A continuous random variable, such as distance, can 

assume values corresponding to any of the points contained in one or more intervals.  The 

graphical form of the probability distribution for a continuous random variable x is a 

smooth curve that might appear as shown in Figure 2.2. 

 

 

Figure 2.2 displays a normal probability distribution of a continuous random variable x.  

The areas under the curve correspond to probabilities for x.  The area under the curve 

Figure 2.3: Area Under the Curve Figure 2.2: Normal Probability Distribution 



18 
 

between points a and b (Figure 2.3) is the probability that x assumes a value between 

points a and b.  The shape of the curve in Figure 2.2 is called a normal distribution.  

There are many shapes of probability distributions and those shapes describe how the 

values of the variable are distributed.  As we shall see, the normal distribution plays a 

large role in this research. 

 When building a model it is often useful to use known distributions types rather 

than empirical distributions.  There are many different known frequency distribution 

types.  Some of the more common types are the Empirical, Continuous, Normal, 

Lognormal, Exponential, Gamma, Binomial, Poisson, Beta, Triangular, Erlang, and 

Weibull.    This can be accomplished using a four step process outlined by Banks et al. 

(2010). 

1. Collect data from the real system of interest. 

2. Select a family of probability distributions that should closely represent the data 

gathered in step 1. 

3. Choose parameters that determine a specific instance of the distribution family. 

4. Evaluate the chosen distribution and the selected parameters for goodness of fit 

either informally via graphical methods or formally using statistical tests.  If this 

step does not provide an acceptable level of goodness of fit the process begins 

again at step 2 until an adequate fit can be found.  If no adequate distribution is 

found the Empirical form of the distribution can be used. 

As recommended in step 4, goodness of fit tests can be used to test candidate 

distributions against the empirical data.  If either the graphical or formal methods provide 
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a satisfactory fit to the empirical data, then the theoretical distribution can be used in 

place of the empirical data for modeling purposes.   

A goodness of fit test determines how well a known distribution matches the 

distribution of the real system’s data that has been collected.  Goodness of fit tests 

provide helpful guidance for evaluating the suitability of a particular distribution with 

given parameters.  It is especially important to note the effect of sample size.  If a very 

small data set is analyzed then a goodness of fit test is unlikely to reject any candidate 

distribution.  Conversely, if a large data set is analyzed then a goodness of fit test is likely 

to reject all candidate distributions.  It is therefore recommended that failing to reject a 

candidate distribution should be taken as one piece of evidence in favor of choosing that 

distribution, and rejecting an input model as only one piece of evidence against that 

distribution (Banks et al, 2010). 

Circular Error Probable vs. Elliptical Error Probable  

Circular Error Probable (CEP) is the Army’s standard measure of accuracy for 

ballistics and is likewise applied to airdrop accuracy.  The CEP is a circular region 

centered on an aimpoint whose perimeter contains the expected percentage of hits.  For 

example, a CEP 90 would be expected to contain 90% of the hits around an aimpoint 

with only 10% of hits falling outside of the defined CEP 90 circle.  This measurement 

works well for defining distributions of ballistics with a circular confidence region but 

may be slightly inaccurate for elliptical regions as expressed by the Mathematical 

Analysis Research Corporation in “Calculation of the CEP” (MARC, 1987).  According 

to the research the CEP is based on the lengths of the semi-major and semi-minor axes of 

the Elliptical Error Probable (EEP).  The CEP can be calculated as follows: 
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 0.75         

In the research they conclude that the CEP and EEP are essentially equivalent for the case 

where the EEP’s major axis equals its minor axis.  In this scenario the CEP is actually 

slightly more conservative than the EEP as can be seen in Figure 2.4 below. 

 

 

For the case where the EEP’s major axis is longer than the minor axis the CEP can begin 

to capture probability in the minor axis directions that the EEP misses but it also misses 

probability in the major axis directions that the EEP catches as seen in figure 2.5.  

  

Figure 2.4: CEP/EEP Comparison w/Equal 
Minor & Major Axis (MARC, 1987) 
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In a more extreme case the CEP can actually begin to overestimate the amount of 

probability contained within its perimeter because the amount of probability it misses in 

the major direction is more than the amount of probability that is gains in the minor 

direction as seen in Figure 2.6 (MARC, 1987). 

 

 

  

Figure 2.5: CEP/EEP Comparison w/Unequal 
Minor & Major Axis; Source: (MARC, 1987) 

Figure 2.6: CEP/EEP Comparison w/Grossly Unequal 
Minor & Major Axis (MARC, 1987) 
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Risk 

 Risk is defined as the chance of loss or injury.  In a situation that has both 

favorable and unfavorable outcomes, risk is the probability that an unfavorable outcome 

occurs (Garvey, 2009).  Risk can therefore be described as a probabilistic event that is 

viewed as being negative. Risk can be classified in a number of different ways.  One 

classification system of risk breaks risk up into the six categories below (Frame, 2003).  

1. Pure (or insurable risk): focuses exclusively on the occurrence of bad things 
2. Business risk: risk that involves the possibility of a loss or a gain 
3. Project risk: risk associated with project management 
4. Operational Risk: addresses the risks associated with carrying out operations 
5. Technical Risk: risks associated with advanced technologies 
6. Political Risk: risks associated with political motives 

For this research the focus will of course be on Operational Risk.  Operational risk is 

different from other classes of risk because we are concerned about managing a necessary 

process and the dangers that are inherent in it.  Operational risk is separated from other 

forms of risk because we are dealing with a well known risk that is part of ongoing 

operations.  In the case of airdrops the risk of striking collateral objects is a well known 

problem.  The question then turns to how do we manage that risk? 

A risk management framework can be described with these five steps: 

1. Step 1: Plan for Risk 
2. Step 2: Identify Risk 
3. Step 3: Examine Risk Impacts, Both Qualitative and Quantitative 
4. Step 4: Develop Risk-Handling Strategies 
5. Step 5: Monitor and Control Risks 

This thesis provides quantitative airdrop data risk predictions to aid in the risk 

management endeavor.   
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III. Methodology 
Introduction 

 This research attempts to answer the question “How can mission planners more 

accurately predict airdrop collateral damage risk?”  To begin to answer this question two 

research objectives were developed.   

The first objective is to determine the best way describe the two-dimensional 

distribution of current airdrop errors through research and analyzing recent operational 

airdrop score data.  Air Mobility Command (AMC)/A2 provided a historical airdrop data 

set gathered in theater from January to August 2010 that contained over 700 data points.  

This data will be analyzed here with to describe the data in a way that can be used later 

for our second objective.   

The second objective of this research is to develop an accessible planning tool 

that enables airdrop planners to accurately gauge the risk of an airdrop striking collateral 

object concerns near a JPDI.  The mission planners require a simple tool that can quickly 

output an accurate estimate of a risk probability to aid in their decision making and 

mission planning process.  To accomplish this, Microsoft’s Excel spreadsheet tool is 

used.  Information gained from the first objective is used to build a tool in Excel that 

provides the necessary output after given the necessary inputs by the user. 

Initial Data Interpretation 

 The data provided by AMC/A2 contained real-world airdrop scoring data 

collected in theater during actual combat operations.  The data contained information 

from over 700 actual combat airdrops.  The data also included the type of aircraft used, 

chute type and altitude from which the airdrop was released.  The drop score was 
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recorded as the clock angle in relation to the DZ axis as well as the distance from the 

JPDI.  A sample of the data format can be seen in Figure 3.1 below.  For all of the data 

points see Appendix B. 

 

 

These data points represent the real world results and are a good indication of the 

accuracy of current operational military airdrop techniques and technology.  Current 

methods and technologies are used to calculate and compensate for all known and 

controllable dynamics that effect airdrop accuracy such as wind, aircraft altitude, aircraft 

speed, cargo characteristics and chute type.  These calculation methods and technologies 

lead to a release of the airdrop from the aircraft at the best known position in the air for 

the airdrop to land at the JPDI.  There is however a certain amount of error in this process 

and the data that has been provided can be used to characterize and describe this error.        

 After an initial inspection of the data the first thing we noticed is the data were not 

provided as Global Positioning System (GPS) coordinates as initially expected.  Instead 

the data were given simply as a distance measurement in yards and a clock position.  

These were both given in relation to the DZ axis (airdrop aircraft axis) and JPDI.  This 

showed a limitation in the accuracy of the data that collected.  An airdrop will land in 

some exact direction and at some exact distance from the JPDI.  When ground personnel 

score the airdrop they estimate the angle to one of the 12 clock radials.   This limitation 

also means that an assumption about the data’s true two-dimensional distribution between 

clock radials must be made. 

AIRCRAFT TYPE ALT CHUTES DISTANCE CLOCK

C‐17 CONV 3,000 26'RS 250 7

C‐17 CONV 3,000 26'RS 0 0

Figure 3.1: Data Sample 
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Cleaning the Data 

 The data set used for this research is real world airdrop scoring data.  These scores 

are reported by the personnel on the ground collecting the airdrops.  The data is recorded 

as a distance and angle from the intended point of impact.  The angle is estimated to the 

closest clock position with 12 o’clock referenced to the DZ axis (aircraft heading).  With 

the scores being recorded in an operational setting the likelihood of decreased accuracy is 

increased when compared to data collected in a controlled testing environment.  

Additionally as with any system of records there may be errors in data entry.  It is 

therefore important that the data be scrutinized prior to analysis. 

 Upon examining the data a few types of errors were noticed:  

1. Data with an aircraft type but no distance or clock position 

2. Data with a distance recorded but no clock position 

3. Data with an “X” prior to the distance 

Data errors of type 1 were not included in the analysis as no information could be 

gained from these entries.  Data errors of type 2 were also not included in the analysis 

with the exception of the entries with a distance of 0.  For a distance of 0 the clock 

position recorded is of no consequence as the airdrop struck on target.  These data points 

were assigned to clock position 12 and were included in the analysis.  Data errors of type 

3 were recorded with an “X” as a result of a question as to the reliability of the recorded 

drop scoring data.  This designator was either recorded at the time of drop scoring or 

during database data entry.  It was also noted that these data points were not used in 
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determining collateral damage risk under AMC’s current methodology.  As these data 

were considered unreliable by the data source and are not currently being used to 

determine risk, they were not used in characterizing the distribution of the airdrop data 

for this research. 

Symmetry 

 As stated earlier the data provided for this research was recorded as a distance in 

yards and a clock position with the JPDI as the center point and the DZ axis as the 

reference clock position of 12 o’clock.  Intuitively airdrops that miss the JPDI will not 

only strike along these 12 clock radials but will rather strike in some continuous two-

dimensional distribution about the JPDI.  The precise angles and distances of these 

misses would enable a more accurate estimation method of the true distribution of airdrop 

misses but unfortunately that data is not available.  The clock angles and distances 

collected are therefore our best estimates of the true two-dimensional miss distribution 

that is to be modeled.    

 An assumption for this research is that there is not a systematic problem with the 

models that are used to calculate aerial release points for airdropped cargo.  This 

assumption leads to the natural conclusion that the center of a two dimensional 

distribution of actual airdrop misses will be the JPDI.  If this were true one should be able 

to see this by analyzing the one dimensional distribution of the miss data along the clock 

positions.  With the data sorted by clock position it should be apparent that the majority 

of the miss distances along each clock position should be gathered close to zero and the 

remaining misses should fall off the farther they are from zero you go.   
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 Another piece of evidence that would support this assumption would be that the 

two dimensional distribution should be relatively symmetric around the JPDI.  Given the 

form of the supplied data one method to test for symmetry that can be used is the 

Kolmogorov-Smirnov (K-S) test.   

 As one of the best known and most frequently used distribution goodness of fit 

tests, the K-S test is very useful.  By calculating the maximum distance between two sets 

of data it is possible to argue that the data are from the same distribution (Clarke/Disney, 

1985).  The K-S two-sample test is an extremely robust nonparametric (distribution-free) 

statistical technique which allows one to compare two distributions for significant 

differences.  Thus, it is ideally suited to many modeling problems.  It will detect any 

difference between two distributions caused by location, dispersion, or skewness.  The 

test is based on the idea that the cumulative distributions of both samples should be fairly 

close to each other if they were drawn from the same distribution.  It is a relatively simple 

test and is not based on restrictive assumptions (Friedman, 1985).   

By using the K-S test we can compare the one-dimensional distribution of clock 

radials to one another.  If the two clock radials pass the K-S test we argue that they could 

be from the same distribution and are therefore symmetrical.  If we repeat the K-S test on 

all possible combinations of radials we can begin to determine if there is symmetry in the 

two-dimensional distribution of the data.  A symmetrical two-dimensional distribution 

would again support the idea that the model used to determine CARP’s is relatively 

accurate and the errors from these models produce a symmetrical scatter of airdrops 

around the JPDI. 
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Transforming Data 

 The recorded data were provided as the distance from JPDI to the actual point of 

impact (API) and the error azimuth relative to the DZ axis.  We can transform this new 

data into a set of (x,y) coordinates where the y-axis is the original DZ axis, the origin is 

the JPDI and the coordinates for the actual point of impact is the (x,y).  We can do this 

using basic trigonometry. 

In can be shown that the lengths of the sides of a right triangle are related to the 

length of the hypotenuse and the angles within the triangle.  For example referencing a 

standard right triangle let’s assume that angle “A’s” source is the origin of our grid (also 

the JPDI), the hypotenuse (side “h”) is the distance from the JPDI to the API, side “b” is 

on top of the x-axis, and angle “B’s” source is the API.  Using this standard right triangle 

as an example the length of side “a” can be calculated by the following formula: 

h * sin(A) = a 

Also, the length of side “b” can be calculated by the following formula: 

h * cos(A) = b 

In this example the length of side “a” will become the “y” coordinate of our data point 

and the length of side “b” will become the “x” coordinate of our data point.  By 

performing this procedure to each of the data points we can develop a new data set of 

bivariate (x,y) data.   

This bivariate data can then be plotted onto a (x,y) scatterplot that displays the 

relationship between the JPDI (the origin) and the actual points of impact (the (x,y)’s).  

This data can also be tested using goodness of fit tests to determine if they conform 

reasonably well to any known distributions. 
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Goodness of Fit Testing    

 Goodness of fit testing is used to determine how closely a known distribution of 

given parameters approximates a data set.  Using a theoretical distribution can give 

advantages over an empirical distribution and we prefer to use a theoretical distribution 

for many reasons.  One advantage of theoretical distributions is that they can provide 

information beyond the range of the sample data whereas empirical distributions are 

limited by the range of the sample (Ebeling, 2005).  Since the samples used for this 

research are a relatively small subset of the population of airdrop data and taken during a 

limited time interval they may not fully describe the population by themselves.    We are 

more interested in what the sample is telling us about the entire population than in the 

peculiarities of the sample itself (Ebeling, 2005).  Therefore we will use research and the 

sample to determine a reasonable theoretical distribution.  Once this reasonable 

theoretical probability distribution is determined this distribution can be used in place of 

the data for modeling purposes.   The risk model developed will be based on this 

theoretical distribution and risk assessments can then be made with the model. 

Data Groups 

 Many factors could affect cargo airdrop accuracy including terrain, aircraft type, 

airdrop altitude, airdrop heading, airdrop method (i.e. conventional, ICDS, JPADS), and 

chute type (low velocity, high velocity) among others.  The data provided includes 

information on each airdrop including aircraft type, chute type, airdrop altitude, distance 

the airdrop landed from the JPDI and the closest clock position from the JPDI to the 

impact point referenced to the DZ axis (aircraft heading).   
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 We are interested in factoring out all variables that affect airdrop accuracy so that 

what we are left with are airdrop errors in a particular category.  With the data set given 

for this research there are three main categories with which the data can be grouped: 

1. Aircraft Type 

 C-130H, C-130J, or C-17 

2. Chute Type 

 HV (26’ RS, LCHV), LV(G-12E, LCLV), or LCLA 

3. Airdrop Altitude 

 ≤ 1,000’, 1,001’ to 2,000’, or 2,001’ to 3,000’ 

These factors can be divided by hierarchical levels as displayed in Figure 3.2 below: 

 

  

 

• Level 1All Data: No Grouping

• Level 2
Grouped by  Either 
Aircraft, Chute Type 
or Airdrop Altitude

• Level 3Grouped by 2 
Categories 

• Level 4
Grouped 
by all 3 

Categories

Figure 3.2: Data Grouping Levels 
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Level 1 data grouping includes all data points regardless of aircraft type, chute 

type or airdrop altitude.  This level of data grouping should represent the general 

behavior of the all of the airdrops.  The Level 2 data grouping divides all of the data into 

groups based on aircraft type, chute type, or airdrop altitude.  If the factor the data is 

grouped by changes the behavior of airdrop, this level of data grouping should enable a 

more accurate picture of the different behaviors in the separate groups.  The Level 3 data 

grouping groups the data by exactly two factors.  Data grouped by Aircraft and Chute 

type would be an example of a Level 3 grouping.  Level 4 data grouping would group the 

data by all 3 factors at the same time breaking the data down by aircraft, chute type, and 

airdrop altitude.  Some combinations of factors were not observed in the data set at Level 

4.   If these factors are significant to the behavior of the airdrops once again a more 

accurate picture of the data may be possible by characterizing the data in each of these 

groups.  That is of course, provided the data set contains enough data points to support 

this level of analysis.  Figure 3.2 displays how increasing the data grouping level 

decreases the sample sizes available at each level.  Without adequately large samples the 

validity of the sample becomes questionable. 

 In addition to limitations due to increasingly small sample sizes as levels increase 

there is another aspect of data grouping to consider.  What if the intuitive data groupings 

are unnecessary because two intuitive groups are not statistically different?  If this were 

the case there would be no need to differentiate the two groups and their respective error 

patterns would effectively be the same.   As a result of similar error patterns, risk 

estimates for these groups could be calculated in the same way as well. 
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 For the purposes of this research one of the aspects that can be examined to 

characterize the data is the standard deviation of the lateral miss distance (x) and the 

standard deviation of the longitudinal miss distance (y).  By comparing these standard 

deviations between proposed groups we can determine if there is any statistical difference 

between them.  If the statistical tools show that there is a difference between groups it 

would be desirable to separate the data to determine risk within those groups.  The 

opposite is also true.  If the there is no statistical difference between groups then the 

groupings could be detrimental to the accuracy of the risk assessments due the resulting 

decrease in sample size. 

The JMP 8.0 statistical software package incorporates homogeneity of variance 

tests.  When JMP tests for homogeneity of variances the software runs and outputs the 

results from four types of tests.  The tests are summarized in the JMP manual as follows: 

 O’Brien’s test constructs a dependent variable so that the group means of 

the new variable equal the group sample variances of the original 

response.  An ANOVA on the O’Brien variable is actually an ANOVA on 

the group sample variances (O’Brien 1979, Olejnik and Algina 1987). 

 The Brown-Forsythe test show the F-test from an ANOVA in which the 

response is the absolute value of the difference of each observation and the 

group median (Brown and Forsythe 1974). 

 Levene’s test shows the F-test from an ANOVA in which the response is 

the absolute value of the difference of each observation and the group 

mean (Levene 1960). 
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 Bartlett’s test compares the weighted arithmetic average of the sample 

variances to the weighted geometric average of the sample variances.  The 

geometric average is always less than or equal to the arithmetic average 

with equality holding only when all sample variances are equal.  The more 

variation there is among the group variances, the more these two averages 

differ.  A function of these two averages is created, which approximates a 

 distribution.  Large values correspond to large values of the 

arithmetic/geometric ratio, and hence to widely varying group variances.  

Bartlett’s test is not very robust to violations of the normality assumption 

(Bartlett and Kendall, 1946). 

For all four of the above tests JMP 8.0 calculates an F and a p-value.  This p-value 

is the probability of obtaining by chance alone an F-value larger than the one calculated 

if, in reality, the variances are equal across all levels.  Observed significance probabilities 

of 0.05 or less are often considered evidence of unequal variances across the levels (JMP 

8.0 Help, 2008).  
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IV. Results and Analysis 

What the Data Looks Like 

 As discussed in the previous chapter the airdrop data were given as distances and 

clock positions.  The data were then converted to ordered (x,y) pairs using the 

aforementioned geometric formulas.  The data in the (x,y) pairs were the input into the 

JMP v8.0 software suite for graphing.  This software was used to create the scatterplot 

and 90% density ellipse in Figure 4.1 below. 

 

  Figure 4.1: All Data Scatterplot 
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Figure 4.2: All Data Scatterplots by 
Altitude Category  

Figure 4.3: All Data Scatterplots by 
Chute Type  

Figure 4.4: All Data Scatterplots by 
Aircraft Type  
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After visual examination of the scatterplot and density ellipses it was noted that the data 

appeared along each of the 12 clock radials.  The data was concentrated more heavily 

towards the center of the scatterplot with a diminishing number of airdrops landing 

further from the center we examined.  It was also noted that a 90% confidence region 

takes the shape of an ellipse with its semi-major radius along the Y axis and its semi-

minor radius along the X axis.  The 90% confidence ellipse is also reasonably centered at 

the origin and is not skewed either left or right. 

 The shape of the confidence region suggests that the true error pattern for airdrops 

is elliptical.  The shape also suggests that there may be different factors causing errors in 

the X and Y directions.  For example the timing of airdrop release should play a major 

role in the error in the Y direction where winds may play a larger role in the errors in the 

X directions.  It is also intuitive that as a result of the elliptical confidence region 

probabilities of collateral objects being struck may not be the same for objects at a set 

distance in the X vs. Y directions.    

Symmetry Testing 

 As introduced in the previous chapter the Kolmogorov-Smirnov (K-S) test was 

used to test if the airdrop scoring data were relatively symmetrical.  Each of the twelve 

clock radials data were compared against each of the other radials using an online K-S 

test calculator provided by the College of Saint Benedict & Saint John’s University 

(CSBSJU, 2010).  The initial results can be seen in Figure 4.5 below. 
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 The results show that the data are reasonably symmetrical with the  12 o’clock 

radial appearing non-symmetric with every other radial.  Upon investigation of this 

phenomenon a potential reason for the difference was noted.  In nearly all cases when a 

zero distance was recorded in the data it was assigned to the 12 o’clock radial.  As a 

result this radial’s distance distribution was unlike any of the other radials.  In order to 

compensate for this problem all zero distances were eliminated from every radial to 

prevent biasing.  The K-S tests were performed once again and the results can be seen in 

Figure 4.6 below. 

 

 

K‐S Test p‐values (with 0 distances included)

1 95% significance level used

2 0.414 Data are not from the same distribution

3 0.499 0.016 Data may be from the same distribution

4 0.942 0.48 0.33 Data are from the same distribution

5 0.457 0.623 0.099 0.871

6 0.968 0.122 0.17 0.985 0.681

7 0.812 0.033 0.946 0.447 0.093 0.358

8 0.878 0.558 0.468 0.927 0.847 0.976 0.51

9 0.551 0.018 0.893 0.28 0.077 0.341 0.893 0.379

10 0.285 0.965 0.119 0.55 0.56 0.341 0.152 0.874 0.139

11 0.333 0.899 0.022 0.325 0.788 0.034 0.043 0.755 0.006 0.472

12 0 0 0 0.094 0.009 0 0.002 0.013 0 0.001 0.001

Radials 1 2 3 4 5 6 7 8 9 10 11 12

K‐S Test p‐values (without 0 distances)

1 95% significance level used

2 0.414 Data are not from the same distribution

3 0.579 0.019 Data may be from the same distribution

4 0.942 0.48 0.351 Data are from the same distribution

5 0.457 0.623 0.11 0.871

6 0.968 0.122 0.197 0.985 0.681

7 0.812 0.033 0.974 0.447 0.093 0.358

8 0.878 0.558 0.513 0.927 0.847 0.976 0.51

9 0.551 0.018 0.874 0.28 0.077 0.341 0.893 0.379

10 0.285 0.965 0.14 0.55 0.56 0.341 0.152 0.874 0.139

11 0.333 0.899 0.026 0.325 0.788 0.034 0.043 0.755 0.006 0.472

12 0.633 0.517 0.016 0.863 0.815 0.331 0.092 0.92 0.033 0.271 0.605

Radials 1 2 3 4 5 6 7 8 9 10 11 12

K‐S Test p‐values (without 0 distances)

Figure 4.5: K-S Symmetry Test (includes 0 distances) 

Figure 4.6: K-S Symmetry Test (0 distances removed) 
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 As the table shows, the vast majority of the radial comparisons appear to support 

the idea that their data come from the same distribution.  These results support the notion 

that the airdrop data displays reasonable symmetry.  This evidence should also support 

the use of some symmetrical theoretical two-dimensional probability distribution to 

represent the true population probability distribution.  But what symmetrical theoretical 

two-dimensional distribution should be an appropriate representation for the error 

patterns in airdrops? 

Goodness of Fit Testing 

 The JMP 8.0 statistical software was used to analyze the airdrop data to help 

determine an appropriate two dimensional distribution to represent the cargo airdrop error 

patterns.  The data were examined using the distribution analyzing functionality of JMP 

8.0.  The X values and Y values were fitted against known distributions.  The data was 

then categorized by altitude, chute type or aircraft type and tested again.  An example of 

the JMP 8.0 test results can be seen in Figure 4.7 below. 
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As mentioned previously if a large data set is analyzed then a goodness of fit test 

is likely to reject all candidate distributions (Banks, 2010).  In fact JMP 8.0’s 

functionality was used to test 12 other commonly known distributions against the data 

and none of the fitted distributions passed a goodness of fit test.  The distributions tested 

were the Normal, Lognormal, Weibull, Weibull (with threshold), Extreme Value, 

Exponential, Gamma, Beta, Smooth Curve, Johnson Su, Johnson Sb, Johnson Sl, and 

Glog.  Of the 13 distributions tested the Normal distribution ranked as the third best 

fitting distribution by the JMP 8.0 software.  As a result of the failure to acceptably fit 

any common distribution to the data, the result of the Normal distribution ranking third 

out of 13 distributions tested, we did not eliminate the bivariate normal distribution from 

Figure 4.7: Sample Normal Goodness of Fit Test Results 
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further consideration.  As we will see there are other reasons why the bivariate normal 

distribution would be a good choice as a model of airdrop error distributions. 

 

The Bivariate Normal Probability Distribution 

 One commonly used bivariate probability distribution is the bivariate normal.  

The bivariate normal probability distribution occurs often in sampling-type problems.  

One area of its application has to do with gunfire ballistics.  It is theorized that due to 

barrel whip, aiming errors, wind effects, projectile irregularities and other reasons, that a 

gun aimed at a particular point will generally hit another point and the probability 

distribution for the impact point can be modeled as a pair of random variables (X,Y) 

where X is the horizontal deviation of the impact point and Y is the range deviation of the 

impact point (Clarke/Disney, 1985).  The bivariate normal probability distribution has 

also been used for naval aircraft ballistics simulations (Bingham, 1970) and is the best 

known and most widely used bivariate distribution (Wilson, 1997). 

Also according to Wilson: 

“When seeking to model the behavior of a bivariate random vector (X,Y), we 

often have information about the marginal means  and , and the correlation 

coefficient , ; and in this situation it is sometimes appropriate to assume that 

(X,Y) has the bivariate normal p.d.f.” 

In many ways the modeling of airdrops is similar to gunfire.  The actual point of 

impact of an airdrop is affected by multiple factors in much the same way that multiple 

factors effect gunfire.  Factors like aiming error, random wind shifts, chute variations, 

and payload irregularities all have corollaries to gunfire. 
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In Berry and Laugginger 1975 a computer simulation was used to verify the 

assumption of a bivariate normal probability distribution of bomb drop errors.  In the 

thesis A Computer Simulation of Release Parameter Effects Upon Bomb Impact 

Distributions Berry and Laugginger found that the assumption of bivariate normal held 

for the majority of the tested scenarios where the input variables were varied according to 

a normal distribution (Berry and Laugginger, 1975). 

There are other theoretical reasons why a bivariate normal distribution would be 

appropriate for use in modeling airdrop errors.  In any situation where a model is fitted 

and measures of unexplained variation in the form of a set of residuals (errors) are 

available for examination the residuals should have zero mean and be normally 

distributed (Draper/Smith, 1966).  This applies to our research as well.  In our case the 

model that is fitted is the CARP calculations that occur prior to airdrop release.  The 

residuals from these models manifest as the recorded drop scores.  In this instance 

however, the residuals can occur in either the lateral (X) or longitudinal (Y) directions.  If 

the CARP models currently in use account for all of the factors that affect airdrop 

accuracy it would be reasonable to expect the residuals from these models to be bivariate 

normally distributed.  As a result of the theoretical evidence and the failure of any other 

theoretical distribution to statistically fit the airdrop data the bivariate normal distribution 

was chosen as our distribution to represent cargo airdrop errors and for our collateral 

damage risk estimation.  The bivariate normal has many desirable properties and its 

characteristics are well known as we will see next.  
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Figure 4.8: The Bivariate Normal Distribution (Duchateau, 2011) 
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The bivariate normal distribution can take on different shapes dependent upon its 

parameters as seen in Figure 4.8.  By varying the  and  the center of the distribution 

can be varied.  For our purposes a 0 and 0 suggests that an average airdrop 

hits on target.  We will later show that the evidence does not prove this to be untrue.  By 

adjusting the  and  the shape can be made more round or more elliptical.  When 

   the error pattern appears round as in Figure 4.4’s first illustration.  When   

and  become more and more different the shape becomes more elliptical.  Finally by 

adjusting  the angle of the ellipse with respect to the x and y axis can be varied as 

displayed by Figure 4.8’s second illustration.  As we will see the evidence provided by 

the airdrop data supports a  = 0.  The combination of these variables makes this 

distribution quite flexible for modeling airdrop errors.  If for example, airdrops in a 

particular category were found to typically land long then the  could be set to 

compensate.  Or if the  and  were found to be the same or very different an accurate 

model could still be built. 

All bivariate probability distributions share common features (Clarke/Disney, 

1985). 

 , 0   , . 

 ,  1 

 ,  is continuous for all except possibly finitely many values of x or y. 

Additionally when X and Y are independent the joint probability can be 

calculated as (Clarke/Disney, 1985): 
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        ,   

These functions can be used to determine the area (probability) below the joint 

density surface with corner points , , , , ,  and , .  The total area 

under the joint density surface equals one so that if the corner points were 

∞, ∞ , ∞, ∞ , ∞, ∞  and ∞, ∞  the probability would be one.  Any 

rectangular probability can be calculated using this formula with the exact probability 

dependent on the actual shape of the particular instance of the bivariate normal 

probability distribution and the values of the corner points of the rectangle.  In other 

words, by enclosing a collateral object with four corner points and describing the airdrop 

errors with a bivariate normal distribution, the probability that the collateral object will be 

hit can be determined through the functions given. 

        ,   

The joint probability distribution of (X,Y) is given as: 

,   
 ·  

   

  

∞   ∞  

∞   ∞  

where  and  are the mean and standard deviation of drop errors in the X direction, and 

 and  are the mean and standard deviation of drop errors in the Y direction; f(x,y) is 

known as the bivariate normal probability distribution (Devore, 1987).   These formulas 

are implemented in a Microsoft Excel spreadsheet as a tool for estimating cargo airdrop 

risk.  By entering the bivariate normal distribution parameters into the spreadsheet the 
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airdrop error pattern will be described.  Then, by entering the corner points around a 

collateral object, the probability of that object being struck by the cargo airdrop can be 

estimated. 

 

Determining Meaningful Data Groupings  

 With a theoretical distribution to represent the airdrop error patterns we next need 

to decide how many different airdrop error patterns exist.  Is one pattern applicable to all 

airdrops or do factors such as aircraft type, chute type or airdrop altitudes contribute to 

the parameters of the airdrop error distribution pattern?  As described earlier the standard 

deviation of X and Y can be compared among groups using JMP 8.0’s homogeneity of 

variance tests.  If the test results show significant differences among groups’ standard 

deviation of X and Y then we conclude that there is a quantifiable difference between the 

groups’ error patterns.  These different error patterns suggest the groups should be 

modeled separately for determining collateral damage risk. 

 The airdrop error data were first grouped by aircraft type (C-130H, C-130J, or C-

17), chute type (26’RS, G-12E, LCHV, LCLA, or LCLV), or airdrop altitude (1,000’, 

2,000’, or 3,000’).  The group variances were then tested for homogeneity using JMP 8.0.  

An example output can be seen in Figure 4.9. 
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As noted by the p-values for the O’Brien, Brown-Forsythe, Levene and Bartlett tests 

there appears to be a definite difference among chute categories.   Therefore, we conclude 

that chute type be taken into consideration when attempting to determine airdrop risk.   

 

 

 

 

Figure 4.9: Chute Type Homogeneity Test Results 
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As noted by the p-values for the O’Brien, Brown-Forsythe, Levene and Bartlett tests 

there appears to be a definite difference among altitude categories in the X direction but 

the difference in the Y direction is not as clearly distinct.    

 
  

Figure 4.10: Altitude Category Homogeneity Test Results 
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As noted by the p-values for the O’Brien, Brown-Forsythe, Levene and Bartlett tests 

there appears to be no definitive difference among aircraft types in the X direction and 

the difference in the Y direction appears to display homogeneity. The results of the 

homogeneity tests are summarized and discussed next. 

 

Figure 4.11: Aircraft Type Homogeneity Test Results 
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The results for the homogeneity of variance test were summarized in Table 4.1.  

Where (Inconclusive) are noted the results among the four homogeneity tests were not in 

agreement and therefore determining homogeneity among groups were not as clear cut.  

The altitude categories showed clear differences in the X dimension but not in the Y 

dimension.  Based on these tests it is recommended to group the data by altitude for risk 

modeling as there is clear evidence of differences in the X dimension.  This should lead 

to a more accurate estimate of error distributions among categories.  As previously 

mentioned the chute type showed clear evidence of differences among groups and 

therefore grouping the data by chute type should also be accomplished for risk modeling.  

The aircraft categories did not prove to have convincingly different variances in the X 

Significant 

LEVEL 2 Difference in (x,y)

Altitude # of Data Pts Std Dev (x) in yds Std Dev (y) in yds  Std Dev Among Cat's? Correlation

1,000 ft 347 107.5 152.9 (Yes, Inconclusive) 0.04

2,000 ft 193 98.9 153.3 (Yes, Inconclusive) 0.00

3,000 ft 136 172.4 178.0 (Yes, Inconclusive) ‐0.03

Significant 

LEVEL 2 Difference in (x,y)

Chute Type # of Data Pts Std Dev (x) in yds Std Dev (y) in yds  Std Dev Among Cat's? Correlation

HV 147 108.2 129.7 (Yes,Yes) 0.05

LV 508 126.7 167.9 (Yes,Yes) 0.01

LCLA 21 30.9 59.3 (Yes,Yes) 0.04

Significant 

LEVEL 2 Difference in (x,y)

A/C Type # of Data Pts Std Dev (x) in yds Std Dev (y) in yds  Std Dev Among Cat's? Correlation

C‐130H 251 125.9 156.7 (Inconclusive,No) ‐0.05

C‐130J 145 100.3 153.4 (Inconclusive,No) 0.09

C‐17 280 126.7 157.4 (Inconclusive,No) 0.02

Table 4.1: Level 2 Homogeneity of Group Variances Test Results 
α = 0.05 
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dimension.  The Y dimension proved to be statistically homogeneous.  Based on these 

results I would recommend not grouping the data by aircraft type for risk modeling due to 

the airdrop error distribution patterns among aircraft types appearing to be the same.   

 In addition to the Level 2 data groupings above the data were also separated into 

the Level 3 groups of (Aircraft Type & Altitude), (Aircraft Type & Chute Type) and 

(Altitude & Chute Type).  A summary of the results of the JMP homogeneity tests can be 

seen in Table 4.2. 

 

 

 Based on the above homogeneity test results it appears that the best Level 3 

grouping of data is the Chute Type and Altitude combination.  These groups show clear 

Significant 

Difference in (x,y)

LEVEL 3 # of Data Pts Std Dev (x) in yds Std Dev (y) in yds  Std Dev Among Cat's?

C‐17 HV 97 101.2 142.0 (Inconclusive,Inconclusive)

LV 183 129.5 172.4 (Inconclusive,Inconclusive)

1000' 97 92.2 151.9 (Yes, Inconclusive)

2000' 90 105.1 145.3 (Yes, Inconclusive)

3000' 93 170.2 174.8 (Yes, Inconclusive)

C‐130H HV 16 119.7 139.2 (Inconclusive,Inconclusive)

LV 214 132.0 163.8 (Inconclusive,Inconclusive)

LCLA 21 31.3 59.7 (Inconclusive,Inconclusive)

1000' 172 112.8 152.9 (Yes, Inconclusive)

2000' 55 113.7 147.2 (Yes, Inconclusive)

3000' 24 207.7 202.6 (Yes, Inconclusive)

C‐130J HV 34 58.2 138.5 (Inconclusive,Inconclusive)

LV 111 110.2 158.3 (Inconclusive,Inconclusive)

1000' 78 113.1 147.1 (Yes, Inconclusive)

2000' 48 58.7 169.9 (Yes, Inconclusive)

3000' 19 124.6 141.4 (Yes, Inconclusive)

HV 1000' 6 76.8 116.5 (Yes,Yes)

2000' 79 84.5 125.0 (Yes,Yes)

3000' 62 129.9 138.0 (Yes,Yes)

LV 1000' 321 110.8 157.6 (Yes,Yes)

2000' 113 108.4 170.4 (Yes,Yes)

3000' 74 191.8 205.8 (Yes,Yes)

LCLA 1000' 21 30.9 59.3 (Yes,Yes)

Table 4.2: Level 3 Homogeneity of Group Variances Test Results 
α = 0.05 
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differences in the standard deviations of both X and Y dimensions.  This is also 

consistent with the findings of the homogeneity tests at Level 2. 

 Data groupings at Level 4 were also considered for homogeneity of variance 

testing, however as seen in Table 4.3, many of the sample sizes at this grouping level 

became extremely small.  It was determined that any information gained from these small 

data samples would not properly describe a two-dimensional probability distribution and 

therefore further data analysis at this level was not pursued.  

 

 

 

LEVEL 4 # of Data Pts Std Dev (x) in yds Std Dev (y) in yds

C‐17 HV All Data 97 101.2 142.0

1000' 3 98.7 145.7

2000' 41 70.2 118.8

3000' 53 116.7 159.3

C‐17 LV All Data 183 129.5 172.4

1000' 94 91.3 152.4

2000' 49 123.4 169.6

3000' 40 196.3 218.2

C‐130J HV All Data 34 58.2 138.5

1000' 1 N/A N/A

2000' 25 56.2 135.1

3000' 8 55.6 123.4

C‐130J LV All Data 111 110.2 158.3

1000' 77 113.8 147.1

2000' 23 59.7 203.6

3000' 11 144.0 125.1

C‐130EH LCLA All Data 21 31.3 59.7

1000' 21 31.3 59.7

2000' N/A N/A

3000' N/A N/A

C‐130EH HV All Data 16 119.7 139.2

1000' 2 0.0 29.0

2000' 13 130.4 152.8

3000' 1 N/A N/A

C‐130EH LV All Data 215 131.8 163.5

1000' 150 120.1 161.9

2000' 42 109.7 143.9

3000' 23 209.3 206.3

Table 4.3: Level 4 Standard Deviation Parameters 
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Determining Bivariate Normal Parameters 

If we know the form of the theoretical relationship of a bivariate distribution but 

do not know the parameters, it would be best to fit this theoretical distribution to the data 

(Box/Draper, 1987).  Since a theoretical distribution has been selected to represent the 

airdrop errors and we know that airdrop chutes and altitudes have an effect on the airdrop 

error distribution we now need to describe how the distribution changes with changes in 

chute type and airdrop altitude.  Through analysis of the variances between data 

groupings we have also determined the most meaningful groupings of the airdrop data 

provided for this research.  The data suggests that grouping by airdrop altitude and chute 

type provides meaningful data groups.  These meaningful data groups are of a generally 

large enough size that their distribution parameters should provide reasonable estimates 

of the true population’s distribution parameters. 

In order to begin estimating probabilities (volumes) beneath a bivariate normal 

probability distribution we must first understand where that distribution is centered at.  

For this we examined the given data set and determined the means of X and Y and their 

95% confidence intervals.  The results are summarized in Table 4.4. 

 

  

 

# of Data  Lower Upper Lower Upper C.I. of X C.I. of Y

Points Mean X Mean Y 95% C.I. X 95% C.I. X 95% C.I. Y 95% C.I. Y  Includes 0?  Includes 0?

All Aircraft 676 12.8 20.0 3.7 22.0 8.0 31.9 No No

C‐17 HV 97 21.3 7.9 0.9 41.7 ‐20.7 36.5 No Yes

C‐17 LV 183 ‐0.7 ‐7.9 ‐19.6 18.2 ‐33.0 17.3 Yes Yes

C‐130J HV 34 1.3 25.6 ‐19.0 21.5 ‐22.8 73.9 Yes Yes

C‐130J LV 111 7.2 24.8 ‐13.5 27.9 ‐5.0 54.5 Yes Yes

C‐130EH LCLA 21 8.4 14.1 ‐6.9 21.7 ‐9.0 45.4 Yes Yes

C‐130EH HV 16 42.2 6.1 ‐21.6 106.0 ‐68.1 80.2 Yes Yes

C‐130EH LV 215 18.2 56.2 0.5 35.9 34.2 78.1 No No

Table 4.4: Mean and 95% Confidence Intervals of X and Y 
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Table 4.4 shows that most of the calculated confidence intervals include 0 with 

notable exceptions.  When all of the data are considered simultaneously the data suggest 

that an average airdrop may not strike at (0,0).  However, the confidence interval’s lower 

boundaries are very close to 0 and for our purposes we are going to say they are 

effectively 0.   This conclusion essentially means that an average airdrop will strike on 

target at (0,0). 

The airdrops display an elliptical pattern.  By examining the correlation of X and 

Y we can determine if that ellipse is in line with the DZ axis or if it is at some angle to it.  

In Table 4.5 below it can be seen that there is no correlation between X and Y suggesting 

that the true airdrop error pattern’s ellipse is in line with the DZ axis. 

 

 

Significant 

LEVEL 2 Difference in (x,y)

Altitude # of Data Pts Std Dev (x) in yds Std Dev (y) in yds  Std Dev Among Cat's? Correlation

1,000 ft 347 107.5 152.9 (Yes, Inconclusive) 0.04

2,000 ft 193 98.9 153.3 (Yes, Inconclusive) 0.00

3,000 ft 136 172.4 178.0 (Yes, Inconclusive) ‐0.03

Significant 

LEVEL 2 Difference in (x,y)

Chute Type # of Data Pts Std Dev (x) in yds Std Dev (y) in yds  Std Dev Among Cat's? Correlation

HV 147 108.2 129.7 (Yes,Yes) 0.05

LV 508 126.7 167.9 (Yes,Yes) 0.01

LCLA 21 30.9 59.3 (Yes,Yes) 0.04

Significant 

LEVEL 2 Difference in (x,y)

A/C Type # of Data Pts Std Dev (x) in yds Std Dev (y) in yds  Std Dev Among Cat's? Correlation

C‐130H 251 125.9 156.7 (Inconclusive,No) ‐0.05

C‐130J 145 100.3 153.4 (Inconclusive,No) 0.09

C‐17 280 126.7 157.4 (Inconclusive,No) 0.02

Table 4.5: Correlation of X and Y 
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After determining the means of X and Y and their correlations the only remaining 

parameters of a bivariate normal are the standard deviation of X and Y.  The data were 

grouped by chute type and altitude.  After grouping the standard deviations in the X and 

Y dimensions were calculated.  The results were recorded in Table 4.6. 

  

 

 As the table shows, even at data grouping Level 3 some of the data groups 

become small.  However, the behavior of standard deviations at this level does appear 

intuitive.  Note how the standard deviations in both the X and Y dimension generally 

decrease as altitude decreases.  Due to the size of the samples at this level of grouping it 

is recommended that this be the lowest level used for calculating airdrop risk.  The values 

in Table 4.6 can be used as bivariate normal parameter inputs in the estimation of airdrop 

collateral damage risk.  This will be discussed next. 

  

Calculating Airdrop Risk 

 With the airdrop error probability distribution being described by the bivariate 

normal distribution with the parameters determined with the data analysis results in Table 

4.4 the risk of striking an object in a DZ can be determined by applying the formulas 

below: 

LEVEL 3 # of Data Pts Std Dev (x) in yds Std Dev (y) in yds

HV 1000' 6 76.8 116.5

2000' 79 84.5 125.0

3000' 62 129.9 138.0

LV 1000' 321 110.8 157.6

2000' 113 108.4 170.4

3000' 74 191.8 205.8

LCLA 1000' 21 30.9 59.3

Table 4.6: Level 3 Standard Deviation Parameters 
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,   
 ·  

   

  

        ,   

Application of the above formulas will allow any collateral object’s risk of being 

struck by an airdrop to be determined.  By fitting a rectangular shape around the shape of 

the collateral object, determining the rectangles corner point coordinates (x1, y1), (x1, y2), 

(x2, y1), and (x2, y2), and calculating the area under the bivariate normal surface the 

probability of striking the collateral object can be estimated.  The risk of striking multiple 

collateral objects can be estimated this way as well.  Since the probability of striking non-

overlapping collateral objects are independent events their probabilities can be simply 

summed together to determine the probability of striking any of the collateral objects.  

Numerical integration must be used because there is no closed form solution to the 

bivariate normal distribution’s probability density function. 

This research employed the rectangular method numerical integration technique.  

Rectangular numerical integration estimates the volume under a curve by breaking the 

area up into smaller rectangles, determining their area, and summing the areas of all of 

the rectangles.  A simple univariate example is shown in Figure 4.12.  
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For estimating the risk of a rectangular collateral object under a bivariate normal 

distribution surface we apply the same principle to two dimensions.  Instead of 

determining the area as before we must now calculate volume.  To do this we divide the 

rectangular collateral object into smaller rectangles, determine their individual volumes, 

and sum them to estimate the total volume under the bivariate density surface.  A visual 

example of the rectangular numerical integration method implemented in two dimensions 

can be seen in Figure 4.13.   

  

Figure 4.12: Rectangular Method Numerical Integration (KSmrq, 2011) 
 

Figure 4.13: 2-D Rectangular Method Numerical Integration (Dawkins, 2011) 
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The total volume under the entire bivariate normal surface equals one because we 

know with absolute certainty that the airdrop will hit the earth at some distance and some 

direction from the JPDI (the bivariate normal’s surface approaches but never arrives at 

zero).  The portion of that volume that resides above the collateral object yet below the 

bivariate normal surface is its probability of being struck by an airdrop.  As discussed 

previously, when multiple non-overlapping rectangular collateral objects are present the 

volumes above each collateral object can be summed to determine the probability that an 

airdrop will strike one of the objects. 

A Microsoft Excel implementation of the above method was developed for the 

calculation of airdrop collateral damage risk estimates (Dillenburger, 2011).  The Excel 

spreadsheet “Airdrop Collateral Damage Risk Estimator” uses numerical integration to 

estimate the probability of striking the inputted collateral objects around an airdrop 

aimpoint based on the defined bivariate normal probability function’s surface.  The shape 

of the airdrop error bivariate normal probability distribution is determined by parameters 

inputted by the Excel file’s user.  A tab with data similar to Table 4.4 is provided for the 

user to choose and input the appropriate  and  parameters.  After inputting the 

parameters, the user has the option to enter the (x1, x2, y1, y2) rectangular coordinates (in 

yards) for up to 20 collateral objects.  These coordinates correlate to (a, b, c, d) in Figure 

4.13.   Following the entry of all necessary data the user simply clicks the “Start” button 

and the Collateral Damage Risk is estimated and displayed.  The displayed probability is 

estimated numerically similar to Figure 4.8 (right graphic).   The displayed output is the 

estimated probability that a single airdropped piece of cargo will strike any of the input 

collateral objects.  This probability could then be used for airdrop planning decisions. 
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Inputs Default Values

Aimpoint(x) 0 0

Aimpoint(y) 0 0

Std Dev(x) 110.8 121.1

Std Dev (y) 157.6 158.3

Correlation (x/y) 0 0

Power 1 1

Stepsize 0.1 0.01

Red cells should not be 
changed from default
without evidence that 
supports doing so!!!

Explanation of Inputs:
Aimpoint (x)/(y):  Aimpoints definewhere an average airdrop is expected to land.  The entered aimpoints 

should  be (0,0) unless new empirical airdrop data shows average airdrops do not land on 
target.  Aimpoints other than  0 may indicate a problem with CARP calculation and/or airdrop 
methodology.

StdDev (x)/(y): Enter standarddeviation lateral and longitudinal from the tab labeled "Distribution Tables". 

Correlation (x/y):  Correlation (x/y) should be 0 unless  new data proves otherwise.  Correlation other than 0 
may indicate a problem with CARP calculation and/or airdrop methodology.

Power:  Power should remain at 1.

Stepsize:  The stepsize describes the size of the squares used for numberical integration and should be 
sufficiently small to ensure accuracy.  Too small of a number will slow computation of risk. 

Figure 4.14: Airdrop Collateral Damage Risk Estimator Screenshot 
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Excel Model Validation 

 The Airdrop Collateral Damage Estimator uses a VBA program designed to 

estimate the volume beneath a bivariate normal density surface over a defined rectangular 

collateral object’s perimeter.  As this is a locally developed program validation was 

required to verify the program’s accuracy.  The Airdrop Collateral Damage Estimator 

was used to calculate a series of probabilities and the results were recorded and compared 

against the results from a commercially available mathematical software application 

“Scientific Workplace”.  The results can be seen below in Table 4.7.  As the table shows 

the program’s calculations are identical to those of the commercial software. 

. 

 

 

  

Along the Y axis Probability Scientific 

Left Boundary Right Boundary Lower Boundary Upper Boundary of Strike Workplace

1 ‐10 10 190 210 0.001628049 0.001628

2 ‐10 10 170 190 0.001896803 0.0018968

3 ‐10 10 150 170 0.002174666 0.0021747

4 ‐10 10 130 150 0.002453454 0.0024535

5 ‐10 10 110 130 0.002723821 0.0027238

6 ‐10 10 90 110 0.002975737 0.0029757

7 ‐10 10 70 90 0.003199085 0.0031991

8 ‐10 10 50 70 0.003384327 0.0033843

9 ‐10 10 30 50 0.003523174 0.0035232

10 ‐10 10 10 30 0.003609202 0.0036092

11 ‐10 10 ‐10 10 0.003638342 0.0036383

12 ‐10 10 ‐30 ‐10 0.003609202 0.0036092

13 ‐10 10 ‐50 ‐30 0.003523174 0.0035232

14 ‐10 10 ‐70 ‐50 0.003384327 0.0033843

15 ‐10 10 ‐90 ‐70 0.003199085 0.0031991

16 ‐10 10 ‐110 ‐90 0.002975737 0.0029757

17 ‐10 10 ‐130 ‐110 0.002723821 0.0027238

18 ‐10 10 ‐150 ‐130 0.002453454 0.0024535

19 ‐10 10 ‐170 ‐150 0.002174666 0.0021747

20 ‐10 10 ‐190 ‐170 0.001896803 0.0018968

21 ‐10 10 ‐210 ‐190 0.001628049 0.001628

Table 4.7: Airdrop Collateral Damage Risk Estimator Validation 
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To demonstrate the expected behavior of probabilities output by the Airdrop 

Collateral Damage Estimator a sample collateral object of constant size measuring 20 

yards by 20 yards was input.  A sample airdrop scenario was developed where the sample 

collateral object was located on a distant location on the y axis and moved along the y 

axis, through the aimpoint and finally to a distant location on the other end of the y axis.  

The probabilities of an airdrop striking the collateral object were calculated and recorded 

for each of the non-overlapping locations along the y axis.  This process was again 

repeated along the x axis and at a 45 degree angle between the x and y axis.   

 As the Airdrop Collateral Damage Estimator is calculating a bivariate normal 

distribution and the marginal distributions from a bivariate normal distribution are 

normally distributed, we would expect the distribution of risk probabilities from these 

three scenarios to display a normal distribution.  A graphic of the results from these 

scenarios can be seen in Figure 4.15. 

 

  

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0.004

1 2 3 4 5 6 7 8 9 101112131415161718192021

Y Axis

X Axis

45 Degree

Figure 4.15: Scenario Test Results 

Probability 
Of Strike 



61 
 

 As expected and illustrated in Figure 4.10, the probabilities of striking the 

collateral object display a normal distribution when the collateral object is moved along 

both the x and y axis as well as through a 45 degree axis. 

 The results from the comparison of our Excel product and Scientific Workplace 

outputs from Table 4.5 as well as the results displayed in Figure 4.10 provide validation 

to the functionality of the Airdrop Collateral Damage Estimator.  The file is performing 

as intended and has the ability to provide numerically integrated probability estimates 

given a set of inputs. 

Example Risk Estimation Scenarios 

 To show the utility available with our approach to airdrop collateral 

damage risk estimation using the bivariate normal some realistic scenarios were 

developed.  We will use the Airdrop Collateral Damage Estimator file to calculate the 

risk of an airdrop striking 10 collateral objects. In the first of 3 scenarios the center 

bundle of a 9 bundle airdrop will be aimed at a collateral object.  The airdrop altitude will 

be 3000 feet and low velocity chutes are used giving a standard deviation in the X 

dimension of 191.8 yards and a standard deviation in the Y dimension of 205.8 yards 

based on the data analyzed in this thesis.  The airdrop speed is 135 knots and an assumed 

timing of 0.5 seconds between bundles is used.   

In the second scenario we keep all of the variables the same as the first with one 

exception.  Each bundle’s aimpoint is moved along the DZ axis 400 yards.  In the third 

and final scenario all of the variables from the second scenario will be retained with the 

exception of a change in chute type to the high velocity chute resulting in a standard 

deviation (x) of 129.9 yards and a standard deviation of (y) of 138.0 yards.  
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Our Excel tool can handle multiple bundle airdrops quite simply.  With an 

example airspeed of 135 knots and 0.5 seconds between each bundle’s exit from the 

aircraft we would expect each bundle’s aimpoint to be 37.98 yards apart along the DZ 

axis.  Once we have calculated the probabilities of each (j) bundle striking each of the  (i) 

collateral objects we can calculate the probability of a strike to collateral object (i) or the 

probability that at least one of the bundles will strike to any of the collateral objects as 

follows: 

the probability of airdrop bundle j striking collateral object i   

1  ∏ 1    =  the probability of any  
airdrop bundle (j)  
striking collateral object (i) 

 
1  ∏ 1  ∑  = the probability of at  

least one airdrop  
bundle striking any of 
the collateral objects 

 
 

 

 

 

 

 

 

 

 

 



63 
 

Figure 4.16 and Figure 4.17 show an Excel distribution parameter screenshot and 

visual representation & summary of the 3 scenarios. 

 

  

 

 

By comparing the three scenarios it is intuitive that any airdrop collateral damage 

risk estimate for Scenario 1 should yield a high probability of collateral damage.  

Scenario 2 should result in a lower probability of damage in comparison to the first 

scenario as the aimpoint is moved away from most of the large collateral objects.  

Inputs Default Values

Aimpoint(x) 0 0

Aimpoint(y) 551.92 0

Std Dev(x) 129.9 121.1

Std Dev (y) 138 158.3

Correlation (x/y) 0 0

Power 1 1

Stepsize 0.1 0.1

1

2

3

4

5

6

7

8

9

10

Scenario 1  
Center Bundle Aimpoint (0,0)

Scenario 2 & 3 
Center Bundle Aimpoint (0,400)

DZ Axis

Collateral Objects
are Numbered

Scenario 1
Airdrop Alt 3000'
Low Velocity chutes
Std Dev (x) = 191.8
Std Dev (y) = 205.8
9 Airdrop bundles
0.5 Seconds between bundles
Airspeed135 knots

Scenario 2
Same as above except center bundle
aimpoint moved to (0,400).

Scenario 3
Same as above except chute type 
changed to High Velocity.
Std Dev (x) = 129.9
Std Dev (y) = 138.0

= 37.98 yds between
bundle aimpoints

Figure 4.17: Graphic Example of Risk 
Estimation Scenarios  

Figure 4.16: Excel Aimpoint Input  
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Scenario 3 should result in the lowest risk estimate due to the improved accuracy of the 

high velocity chutes. 

 As Table 4.8 shows, all scenarios resulted in intuitive risk estimations.  Scenario 1 

results in a very high 60.6% probability of a collateral object strike, Scenario 2 results in 

a much lower 11.9%, and Scenario 3 returns a very low 5.1%.  Further inspection reveals 

expected behavior between individual bundle probabilities within and across scenarios.   

 As an example in Scenario 1 the center bundle has the highest probability of 

striking collateral object 5 and preceding/trailing bundles have an increasingly less 

chance of a strike.  Additionally the first bundles have the highest probability of striking 

collateral objects 1 through 4 while the trailing bundles have the highest probability of 

striking collateral objects 7 through 10. 

 When comparing Scenarios 2 & 3 it can be noted that in Scenario 2 the last CDS 

bundle is the most likely bundle to strike collateral objects 3 and 5 through 8.  It is also 

the most likely bundle to strike those same collateral objects in Scenario 3 except with a 

lower probability compared to Scenario 2.  This is the expected behavior because the 

aimpoint remained the same but a more accurate chute type was chosen. 
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Scenario 1 Results

Aim Point (0,‐151.92) (0, ‐113.94) (0,‐75.96) (0,‐37.98) (0,0) (0,37.98) (0,75.96) (0, 113.94) (0,151.92)

CDS Bundle # (j) Probability

Collateral Object # (i) 9 8 7 6 5 4 3 2 1 of Strike

1 0.0000% 0.0000% 0.0000% 0.0000% 0.0000% 0.0000% 0.0001% 0.0001% 0.0002% 0.0004%

2 0.0000% 0.0000% 0.0000% 0.0001% 0.0001% 0.0002% 0.0003% 0.0004% 0.0006% 0.0017%

3 0.0166% 0.0250% 0.0364% 0.0512% 0.0696% 0.0914% 0.1161% 0.1425% 0.1692% 0.7158%

4 0.0015% 0.0019% 0.0023% 0.0028% 0.0032% 0.0036% 0.0040% 0.0042% 0.0042% 0.0277%

5 3.0224% 3.3971% 3.6929% 3.8826% 3.9480% 3.8826% 3.6929% 3.3971% 3.0224% 27.7646%

6 0.5486% 0.6040% 0.6429% 0.6615% 0.6580% 0.6327% 0.5881% 0.5284% 0.4589% 5.1991%

7 5.0919% 4.9114% 4.5855% 4.1439% 3.6248% 3.0690% 2.5150% 1.9949% 1.5315% 27.4599%

8 3.8541% 3.3992% 2.9127% 2.4245% 1.9600% 1.5386% 1.1726% 0.8674% 0.6226% 17.3075%

9 0.0002% 0.0001% 0.0001% 0.0001% 0.0001% 0.0000% 0.0000% 0.0000% 0.0000% 0.0006%

10 0.0256% 0.0189% 0.0134% 0.0093% 0.0062% 0.0040% 0.0025% 0.0015% 0.0009% 0.0821%

Total Probability 12.5609% 12.3577% 11.8863% 11.1759% 10.2699% 9.2221% 8.0914% 6.9364% 5.8104%

(1‐P) 87.4391% 87.6423% 88.1137% 88.8241% 89.7301% 90.7779% 91.9086% 93.0636% 94.1896% 60.6404%

Scenario 2 Results Moved aimpoint 400 yards from original along the DZ axis

Aim Point (0,248.08) (0, 286.06) (0,324.04) (0,362.02) (0,400) (0,437.98) (0,475.96) (0, 513.94) (0,551.92)

CDS Bundle # (j) Probability

Collateral Object # (i) 9 8 7 6 5 4 3 2 1 of Strike

1 0.0005% 0.0008% 0.0012% 0.0018% 0.0025% 0.0033% 0.0043% 0.0053% 0.0064% 0.0262%

2 0.0012% 0.0015% 0.0018% 0.0022% 0.0025% 0.0027% 0.0029% 0.0029% 0.0029% 0.0206%

3 0.2244% 0.2363% 0.2405% 0.2367% 0.2252% 0.2071% 0.1841% 0.1582% 0.1314% 1.8288%

4 0.0038% 0.0034% 0.0030% 0.0025% 0.0020% 0.0016% 0.0012% 0.0009% 0.0006% 0.0191%

5 1.9363% 1.5310% 1.1708% 0.8659% 0.6194% 0.4285% 0.2867% 0.1855% 0.1161% 6.9331%

6 0.2760% 0.2127% 0.1584% 0.1141% 0.0794% 0.0534% 0.0348% 0.0219% 0.0133% 0.9602%

7 0.6776% 0.4635% 0.3068% 0.1965% 0.1218% 0.0731% 0.0424% 0.0238% 0.0130% 1.9044%

8 0.2348% 0.1513% 0.0945% 0.0572% 0.0336% 0.0191% 0.0105% 0.0056% 0.0029% 0.6081%

9 0.0000% 0.0000% 0.0000% 0.0000% 0.0000% 0.0000% 0.0000% 0.0000% 0.0000% 0.0000%

10 0.0002% 0.0001% 0.0000% 0.0000% 0.0000% 0.0000% 0.0000% 0.0000% 0.0000% 0.0004%

Total Probability 3.3549% 2.6007% 1.9772% 1.4769% 1.0863% 0.7887% 0.5668% 0.4041% 0.2866%

(1‐P) 96.6451% 97.3993% 98.0228% 98.5231% 98.9137% 99.2113% 99.4332% 99.5959% 99.7134% 11.9063%

Scenario 3 Results Moved aimpoint 400 yards from original along the DZ axis and changed chute type to High Velocity.

Aim Point (0,248.08) (0, 286.06) (0,324.04) (0,362.02) (0,400) (0,437.98) (0,475.96) (0, 513.94) (0,551.92)

CDS Bundle # (j) Probability

Collateral Object # (i) 9 8 7 6 5 4 3 2 1 of Strike

1 0.0000% 0.0000% 0.0000% 0.0000% 0.0000% 0.0000% 0.0000% 0.0000% 0.0000% 0.0000%

2 0.0000% 0.0000% 0.0000% 0.0000% 0.0000% 0.0000% 0.0000% 0.0000% 0.0000% 0.0000%

3 0.0855% 0.0958% 0.0997% 0.0962% 0.0861% 0.0715% 0.0551% 0.0394% 0.0262% 0.6537%

4 0.0000% 0.0000% 0.0000% 0.0000% 0.0000% 0.0000% 0.0000% 0.0000% 0.0000% 0.0000%

5 1.8043% 1.0830% 0.6044% 0.3136% 0.1513% 0.0678% 0.0283% 0.0109% 0.0039% 4.0099%

6 0.1291% 0.0725% 0.0378% 0.0183% 0.0082% 0.0034% 0.0013% 0.0005% 0.0002% 0.2711%

7 0.1283% 0.0570% 0.0236% 0.0091% 0.0033% 0.0011% 0.0003% 0.0001% 0.0000% 0.2227%

8 0.0101% 0.0041% 0.0015% 0.0005% 0.0002% 0.0001% 0.0000% 0.0000% 0.0000% 0.0164%

9 0.0000% 0.0000% 0.0000% 0.0000% 0.0000% 0.0000% 0.0000% 0.0000% 0.0000% 0.0000%

10 0.0000% 0.0000% 0.0000% 0.0000% 0.0000% 0.0000% 0.0000% 0.0000% 0.0000% 0.0000%

Total Probability 2.1573% 1.3125% 0.7671% 0.4377% 0.2490% 0.1439% 0.0851% 0.0510% 0.0303%

(1‐P) 97.8427% 98.6875% 99.2329% 99.5623% 99.7510% 99.8561% 99.9149% 99.9490% 99.9697% 5.1341%

Table 4.8: Scenario 1, 2, & 3 Results 
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 The graphic in Figure 4.18 provides a visual example of how the excel tool can 

provide insights into collateral damage risks.  As expected, aiming the center of a 9 

bundle airdrop near the center of several large collateral objects is ill-advised.  A 

collateral object’s size and location in reference to each bundle’s aimpoint determines its 

probability of being struck.  The closer and larger the object is, the higher the risk.  As 

expected object #5 has a high probability of being struck.  Its risk is nearly identical to 

the larger object #7 and is greater than the much larger object #8.  Again, an object’s 

probability of being struck is a function of its size and its location relative to the airdrop’s 

aimpoints.  Notice object #6’s relatively low risk despite its proximity to the aimpoints.  

This is owing to its relatively small size.  

Figure 4.18: Graphic of Scenario 1 Results 
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 In Figure 4.19 we see the results of Scenario 2 where we are still using low 

velocity chutes but have moved the bundle aimpoints 400 yards further along the DZ 

axis.  Notice how appreciably smaller the risks for each object have become.  Object #5 

still stands a fair chance of being struck owing to its size and location along the DZ axis.  

The standard deviations in the Y dimension are larger than those in the X dimension; 

therefore objects close to the DZ axis will stand a higher chance of strike. 

 

Figure 4.19: Graphic of Scenario 2 Results 
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In Figure 4.20 we see the results of Scenario 3 where we are using the same 

aimpoints as Scenario 2 but have switched to the more accurate high velocity chute type.  

The main collateral object strike concern, object #5’s probability of being struck has 

nearly been cut in half.  The lower standard deviations in the X and Y dimension show 

the higher accuracy of the high velocity chute type and the reduced collateral damage  

risks are reflected in the Excel tool’s output.  

 

Figure 4.20: Graphic of Scenario 3 Results 
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V. Conclusions 

Conclusions Summary 

This thesis began with the seemingly simple question:  How can mission planners 

accurately predict airdrop collateral damage risk?  A review of the literature and a 

statistical examination of recent airdrop data were conducted in order to answer this 

question.  In the previous chapters the literature review and research have provided the 

basis for the following conclusions: 

 The true error distribution pattern for cargo airdrops is most probably elliptical in 

nature. 

o Examination of the airdrop scoring data set shows that airdrop errors along 

the DZ axis (Y dimension) tend to be slightly larger than those 

perpendicular to the DZ axis (X dimension).  This could be caused by 

different factors affecting the airdrop errors in the two dimensions.  For 

example, the timing of the cargo drop from the aircraft would tend to have 

a significant effect on the Y dimension while wind currents could tend to 

be more responsible for errors in the X dimension. 

 An average cargo airdrop strikes its intended aimpoint. 

o This conclusion is intuitive and suggests that the current CARP models 

and cargo airdrop methods result in the intended outcome.  This also 

means there is no systematic problem with the CARP models and airdrop 

methods. 
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 Cargo airdrop errors in the X dimension are uncorrelated from those in the Y 

dimension. 

o The airdrop scoring data does not display any correlation between X and 

Y and the axes of the elliptical error pattern are in line with the X and Y 

axes. 

 The true error distribution pattern for cargo airdrops is reasonably symmetrical. 

o The K-S testing of the airdrop scoring data showed that when comparing 

distance data along the clock radials the data appeared to be from the same 

distribution indicating symmetry.  This indicates that some sort of 

symmetrical pattern should be used to model the airdrop errors. 

 The bivariate normal is an appropriate distribution to use as the basis for 

modeling cargo airdrop errors in order to estimate collateral damage risk. 

o Based mainly on theoretical evidence, the bivariate normal distribution is 

used as the foundation of cargo airdrop risk estimation employed in this 

research.  The bivariate normal is used in similar applications such as 

gunfire ballistics, naval aircraft ballistic simulations, and bomb drop 

errors.  Additionally, in any situation where a model is fitted and measures 

of unexplained variation in the form of a set of residuals (errors) are 

available for examination the residuals should have zero mean and be 

normally distributed (Draper/Smith, 1966).  
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 Chute type makes a statistical difference in cargo airdrop error distribution 

patterns. 

o The data were grouped by chute type and homogeneity of variance tests 

were conducted.  The results provide evidence that suggests that High 

Velocity chutes are statistically superior to Low Velocity chutes and 

provide a smaller standard deviation of error.  This suggests that different 

models parameters should be used to estimate cargo airdrop collateral 

damage risk for low vs. high velocity chutes. 

 Airdrop altitude makes a statistical difference in cargo airdrop error distribution 

patterns. 

o The data were grouped by airdrop altitude and homogeneity of variance 

tests were conducted.  The results provide evidence that suggests that the 

lower airdrop altitudes provide a smaller standard deviation of error when 

all other factors are held constant.  This suggests that different models 

parameters should be used to estimate cargo airdrop collateral damage risk 

for different altitudes. 

 The type of aircraft used for a cargo airdrop does not appear to make a statistical 

difference in cargo airdrop error distribution patterns. 

o The data were grouped by aircraft type and homogeneity of variance tests 

were conducted.  The results provide evidence that suggests that the type 

of aircraft conducting an airdrop does not make a statistical difference in 

the airdrop error pattern when all other factors are held constant. 
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 Grouping cargo airdrop scoring data by chute type and airdrop altitude provides 

the clearest differences among cargo airdrop error distribution patterns.   

o The data were grouped by chute type and then by airdrop altitude and 

homogeneity of variance tests were conducted on the grouped data.  These 

groupings showed clear distinctions in both the standard deviation of X 

and Y.  This level of data grouping is recommended for modeling airdrop 

errors and estimating cargo airdrop collateral damage risk. 

In an effort to make the results of this research applicable to mission planning an 

airdrop collateral damage risk estimation tool was also developed for consideration.  The 

Airdrop Collateral Damage Estimator was coded into Microsoft’s Excel spreadsheet tool 

and can provide reliable risk estimates (Dillenburger, 2011).  The tool can be used with 

only simple, easy to understand inputs and provides clear outputs in the form of a 

percentage risk of an airdrop striking a collateral object concern. 

Limitations 

 This research focused on determining the appropriate way to model and 

determines the collateral damage risk associated with one piece of airdropped cargo.  The 

scoring data that was collected is based on the center bundle of a string of bundles that 

are typically dropped from an aircraft.  Therefore the true risk to a collateral object is the 

probability of any one of a string of airdropped cargo bundles striking it.  Therefore this 

research in its current state only accounts for the risk associated with one object and can 

only be used to estimate risk in this limited scenario. 
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Areas for Future Research 

 This research is the first step towards creating a useful and accurate method for 

estimating airdrop collateral damage risk but there is much more work that can be done in 

this area.  

 This research was conducted with a limited amount of airdrop scoring data 

gathered from January to August 2010.  Further research using a much larger real 

world data set or a higher fidelity data set such as testing data can yield higher 

fidelity in estimating cargo airdrop error distribution patterns and the risk 

estimations associated with them. 

 This research focuses on and provides a tool for estimating collateral damage risk 

associated with one piece of airdropped cargo.  The next logical evolution of this 

work would be to expand on the capabilities of the Airdrop Collateral Damage 

Risk Estimator to include multiple airdrop bundles. 

 The current methodology assumes the drop zone and all collateral objects are flat 

and level.  Further enhancing the methodology to account for changes in elevation 

of both the drop zone and collateral objects would improve the fidelity of the risk 

estimations provided. 

 Use and extension of this research to determine constrained optimal aimpoints for 

cargo airdrops minimizing the risk of a collateral object strike. 

 Examine potential Air Force policy implications if this research methodology 

were adopted by AMC for cargo airdrop mission planning. 
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Appendix A: Airdrop Data 
AIRCRAFT TYPE ALT CHUTES DISTANCE CLOCK X Y 
C-17 CONV 3,000 26'RS 250 7 -125.00 -216.51 
C-17 CONV 3,000 26'RS 0 0 0.00 0.00 
C-17 CONV 3,000 26'RS  
C-130J CONV 3,000 26'RS 295 12 0.00 295.00 
C-17 CONV 3,000 26'RS x445 8  
C-130J CONV 3,000 26'RS 58 4 50.23 -29.00 
C-17 CONV 1,000 26'RS  
C-130J CONV 3,000 26'RS x17 3  
C-17 CONV 2,500 26'RS 0 0 0.00 0.00 
C-17 CONV 2,500 26'RS 133 9 -133.00 0.00 
C-130J CONV 3,300 26'RS x200 3  
C-130J CONV 1,500 26'RS 48 4 41.57 -24.00 
C-130J CONV 2,000 26'RS 229 6 0.00 -229.00 
C-130J CONV 2,000 26'RS 50 12 0.00 50.00 
C-17 CONV 3,000 26'RS 35 6 0.00 -35.00 
C-130J CONV 2,000 26'RS 59 1 29.50 51.10 
C-17 CONV 3,000 26'RS 147 6 0.00 -147.00 
C-17 CONV 3,000 26'RS 241 5 120.50 -208.71 
C-130J CONV 1,500 26'RS 134 12 0.00 134.00 
C-130J CONV 2,000 26'RS 219 12 0.00 219.00 
C-130H CONV 2,000 26'RS  
C-130H CONV 1,500 G12D x400 3  
C-130J CONV 3,000 G12E 85 11 -42.50 73.61 
C-130J CONV 1,500 G12E 175 1 87.50 151.55 
C-130H CONV 1,500 G12E 106 11 -53.00 91.80 
C-130H CONV 1,500 G12E 0 12 0.00 0.00 
C-17 CONV 1,800 G12E 240 3 240.00 0.00 
C-17 CONV 1,500 G12E  
C-130H CONV 1,500 G12E 500 1 250.00 433.01 
C-130H CONV 1,500 G12E 0 0 0.00 0.00 
C-17 CONV 1,500 G12E 105 12 0.00 105.00 
C-17 CONV 1,500 G12E 110 6 0.00 -110.00 
C-130J CONV 1,500 G12E 120 4 103.92 -60.00 
C-130H CONV 2,000 G12E x222 2  
C-17 CONV 1,500 G12E 105 1 52.50 90.93 
C-17 CONV 1,500 G12E 120 12 0.00 120.00 
C-130H CONV 1,000 G12E 330 11 -165.00 285.79 
C-17 CONV 1,000 G12E 145 1 72.50 125.57 
C-17 CONV 1,000 G12E 240 12 0.00 240.00 
C-17 CONV 1,000 G12E 200 11 -100.00 173.21 
C-130J CONV 1,000 G12E 215 1 107.50 186.20 
C-130J CONV 3,000 G12E 100 7 -50.00 -86.60 
C-17 CONV 2,500 G12E  
C-130H CONV 1,000 G12E 275 12 0.00 275.00 
C-130J CONV 1,500 G12E 30 1 15.00 25.98 
C-17 CONV 1,000 G12E 126 1 63.00 109.12 
C-17 CONV 1,000 G12E 85 3 85.00 0.00 
C-17 CONV 1,000 G12E 190 11 -95.00 164.54 
C-130J CONV 1,000 G12E 265 12 0.00 265.00 
C-130H CONV 1,000 G12E 75 12 0.00 75.00 
C-130J CONV 1,000 G12E 0 0 0.00 0.00 
C-130J CONV 3,000 G12E 150 11 -75.00 129.90 
C-17 CONV 1,000 G12E 0 0 0.00 0.00 
C-130H CONV 1,000 G12E 27 9 -27.00 0.00 
C-130H CONV 1,000 G12E 696 1 348.00 602.75 
C-130H CONV 1,000 G12E 78 6 0.00 -78.00 
C-130J CONV 1,500 G12E 142 6 0.00 -142.00 
C-130H CONV 1,000 G12E 469 10 -406.17 234.50 
C-17 CONV 2,100 G12E 147 2 127.31 73.50 
C-130J CONV 1,000 G12E 134 6 0.00 -134.00 
C-130J CONV 1,000 G12E 150 12 0.00 150.00 
C-130H CONV 500 G12E 190 12 0.00 190.00 
C-130J CONV 500 G12E 73 1 36.50 63.22 
C-130H CONV 600 G12E 191 1 95.50 165.41 
C-130J CONV 1,000 G12E 124 6 0.00 -124.00 
C-130H CONV 3,000 G12E 230 10 -199.19 115.00 
C-130J CONV 3,000 G12E 100 3 100.00 0.00 
C-130J CONV 1,000 G12E 114 3 114.00 0.00 
C-130H CONV 2,000 G12E 55 9 -55.00 0.00 
C-130H CONV 3,000 G12E 0  
C-130H CONV 2,000 G12E 175 12 0.00 175.00 
C-130H CONV 500 G12E 178 3 178.00 0.00 
C-130J CONV 1,500 G12E 0  
C-130J CONV 1,000 G12E 130 6 0.00 -130.00 
C-130H CONV 1,500 G12E 100 3 100.00 0.00 
C-130H CONV 1,000 G12E 174 11 -87.00 150.69 
C-130J CONV 1,500 G12E 317 12 0.00 317.00 
C-130H CONV 3,000 G12E 88 5 44.00 -76.21 
C-130H CONV 1,500 G12E 0  
C-17 CONV 1,500 G12E 0 0 0.00 0.00 
C-130J CONV 1,500 G12E x351 6  
C-130H CONV 1,500 G12E x262 6  
C-130J CONV 2,000 G12E  
C-130J CONV 1,000 G12E 52 12 0.00 52.00 



75 
 

AIRCRAFT TYPE ALT CHUTES DISTANCE CLOCK X Y 
C-130H CONV 600 G12E 170 2 147.22 85.00 

C-130H CONV 1,500 G12E 90  
C-130H CONV 1,000 G12E 0  
C-130J CONV 600 G12E 318 12 0.00 318.00 
C-130H CONV 1,500 G12E 221 12 0.00 221.00 
C-130H CONV 500 G12E 50 12 0.00 50.00 
C-130H CONV 1,000 G12E 37 6 0.00 -37.00 
C-130H CONV 1,000 G12E X263 X12  
C-130H CONV 1,000 G12E  
C-130H CONV 600 G12E X300 12  
C-130H CONV 1,000 LCHV 50 12 0.00 50.00 
C-130J CONV 2,000 LCHV  
C-130H CONV 3,000 LCHV Unknown NA  
C-130H CONV 3,000 LCHV Unknown NA  
C-130H CONV 2,000 LCHV 65 3 65.00 0.00 
C-130H CONV 3,000 LCHV x34 9  
C-17 CONV 2,000 LCHV 90 1 45.00 77.94 
C-130H CONV 2,000 LCHV x800 12  
C-17 CONV 2,000 LCHV X X  
C-130H CONV 2,000 LCHV 100 2 86.60 50.00 
C-130J CONV 2,000 LCHV x300 12  
C-17 CONV 2,000 LCHV 0 0 0.00 0.00 
C-17 CONV 2,000 LCHV 57 3 57.00 0.00 
C-17 CONV 2,000 LCHV 103 10 -89.20 51.50 
C-17 CONV 2,000 LCHV 73 11 -36.50 63.22 
C-130J CONV 2,000 LCHV  
C-17 CONV 2,000 LCHV 100 3 100.00 0.00 
C-130J CONV 3,000 LCHV 25 5 12.50 -21.65 
C-130H CONV 2,000 LCHV 52 6 0.00 -52.00 
C-130H CONV 2,000 LCHV 317 3 317.00 0.00 
C-17 CONV 2,100 LCHV 188 1 94.00 162.81 
C-130H CONV 2,000 LCHV 93 3 93.00 0.00 
C-130H CONV 2,000 LCHV 40 11 -20.00 34.64 
C-17 CONV 2,500 LCHV 188 8 -162.81 -94.00 
C-17 CONV 2,000 LCHV 30 12 0.00 30.00 
C-17 CONV 2,000 LCHV 67 12 0.00 67.00 
C-17 CONV 2,000 LCHV 63 2 54.56 31.50 
C-17 CONV 2,000 LCHV 39 6 0.00 -39.00 
C-17 CONV 2,000 LCHV 55 12 0.00 55.00 
C-17 CONV 2,000 LCHV 130 12 0.00 130.00 
C-17 CONV 2,000 LCHV 122 2 105.66 61.00 
C-17 CONV 2,000 LCHV 192 12 0.00 192.00 
C-17 CONV 2,000 LCHV 25 8 -21.65 -12.50 
C-17 CONV 3,000 LCHV 61 1 30.50 52.83 
C-17 CONV 3,000 LCHV 61 1 30.50 52.83 
C-17 CONV 3,000 LCHV 40 2 34.64 20.00 
C-130J CONV 2,000 LCHV 108 6 0.00 -108.00 
C-130J CONV 2,000 LCHV 1 3 1.00 0.00 
C-17 CONV 2,100 LCHV 84 4 72.75 -42.00 
C-130J CONV 2,000 LCHV 48 6 0.00 -48.00 
C-130J CONV 2,000 LCHV 0 0 0.00 0.00 
C-130J CONV 1,000 LCHV 111 6 0.00 -111.00 
C-130J CONV 2,000 LCHV 59 11 -29.50 51.10 
C-130J CONV 2,000 LCHV 162 4 140.30 -81.00 
C-17 CONV 2,000 LCHV 185 6 0.00 -185.00 
C-17 CONV 2,000 LCHV 82 7 -41.00 -71.01 
C-17 CONV 3,000 LCHV 85 3 85.00 0.00 
C-17 CONV 2,100 LCHV 225 5 112.50 -194.86 
C-130J CONV 2,000 LCHV 17 8 -14.72 -8.50 
C-17 CONV 3,000 LCHV 201 2 174.07 100.50 
C-17 CONV 2,000 LCHV 142 7 -71.00 -122.98 
C-17 CONV 2,000 LCHV 188 2 162.81 94.00 
C-130J CONV 2,000 LCHV 37 9 -37.00 0.00 
C-17 CONV 3,000 LCHV 116 2 100.46 58.00 
C-130J CONV 2,000 LCHV  
C-17 CONV 1,000 LCHV 172 12 0.00 172.00 
C-17 CONV 3,000 LCHV 92 9 -92.00 0.00 
C-130J CONV 2,000 LCHV 160 10 -138.56 80.00 
C-17 CONV 1,500 LCHV  
C-17 CONV 2,000 LCHV  
C-17 CONV 3,000 LCHV 250 3 250.00 0.00 
C-130H CONV 1,000 LCHV  
C-17 CONV 3,000 LCHV 91 9 -91.00 0.00 
C-17 CONV 3,000 LCHV 271 2 234.69 135.50 
C-17 CONV 2,000 LCHV 145 7 -72.50 -125.57 
C-130J CONV 3,000 LCHV 170 2 147.22 85.00 
C-17 CONV 2,000 LCHV  
C-17 CONV 2,000 LCHV 152 2 131.64 76.00 
C-17 CONV 2,000 LCHV 212 1 106.00 183.60 
C-17 CONV 2,000 LCHV 240 12 0.00 240.00 
C-130H CONV 2,000 LCHV 93 6 0.00 -93.00 
C-130H CONV 1,000 LCHV  
C-17 CONV 2,000 LCHV 122 6 0.00 -122.00 
C-17 CONV 3,000 LCHV 58 5 29.00 -50.23 
C-130H CONV 2,000 LCHV 466 5 233.00 -403.57 
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AIRCRAFT TYPE ALT CHUTES DISTANCE CLOCK X Y 
C-17 CONV 3,000 LCHV 223 6 0.00 -223.00 

C-17 CONV 3,000 LCHV  
C-17 CONV 2,000 LCHV 150 6 0.00 -150.00 
C-130H CONV 2,000 LCHV 75 6 0.00 -75.00 
C-17 CONV 3,000 LCHV 274 9 -274.00 0.00 
C-17 CONV 3,000 LCHV  
C-17 CONV 2,000 LCHV 226 3 226.00 0.00 
C-17 CONV 3,000 LCHV 210 3 210.00 0.00 
C-130H CONV 3,000 LCHV 128 3 128.00 0.00 
C-130J CONV 3,000 LCHV 150 12 0.00 150.00 
C-17 CONV 3,000 LCHV 30 12 0.00 30.00 
C-130J CONV 3,000 LCHV 159 12 0.00 159.00 
C-130J CONV 3,000 LCHV 248 12 0.00 248.00 
C-130H CONV 2,000 LCHV 225 12 0.00 225.00 
C-17 CONV 3,000 LCHV 242 2 209.58 121.00 
C-17 CONV 2,000 LCHV 168 6 0.00 -168.00 
C-17 CONV 3,000 LCHV 162 5 81.00 -140.30 
C-17 CONV 3,000 LCHV 363 6 0.00 -363.00 
C-130J CONV 2,000 LCHV 168 6 0.00 -168.00 
C-17 CONV 2,000 LCHV 104 3 104.00 0.00 
C-130H CONV 9,200 LCHV X X  
C-17 CONV 2,000 LCHV 130 7 -65.00 -112.58 
C-130H CONV 2,000 LCHV 205 12 0.00 205.00 
C-17 CONV 2,000 LCHV 131 9 -131.00 0.00 
C-17 CONV 2,151 LCHV 106 11 -53.00 91.80 
C-17 CONV 2,000 LCHV 60 6 0.00 -60.00 
C-17 CONV 3,000 LCHV 40 12 0.00 40.00 
C-17 CONV 2,000 LCHV 27 9 -27.00 0.00 
C-130J CONV 3,000 LCHV 94 3 94.00 0.00 
C-130J CONV 2,000 LCHV 161 9 -161.00 0.00 
C-17 CONV 2,000 LCHV 310 6 0.00 -310.00 
C-17 CONV 1,000 LCHV 107 11 -53.50 92.66 
C-17 CONV 3,000 LCHV 100 12 0.00 100.00 
C-17 CONV 3,000 LCHV 176 5 88.00 -152.42 
C-130J CONV 2,000 LCHV 186 11 -93.00 161.08 
C-17 CONV 3,000 LCHV 293 5 146.50 -253.75 
C-17 CONV 1,000 LCHV x505 8  
C-17 CONV 3,000 LCHV 294 6 0.00 -294.00 
C-17 CONV 1,500 LCHV 158 5 79.00 -136.83 
C-130J CONV 2,000 LCHV 139 12 0.00 139.00 
C-17 CONV 3,000 LCHV 146 6 0.00 -146.00 
C-17 CONV 3,000 LCHV 260 3 260.00 0.00 
C-130J CONV 2,000 LCHV 408 6 0.00 -408.00 
C-17 CONV 3,000 LCHV 495 3 495.00 0.00 
C-17 CONV 3,000 LCHV 68 12 0.00 68.00 
C-130H CONV 2,000 LCHV 65 12 0.00 65.00 
C-130J CONV 2,000 LCHV 77 6 0.00 -77.00 
C-17 CONV 3,000 LCHV 126 1 63.00 109.12 
C-130H CONV 2,000 LCHV 227 9 -227.00 0.00 
C-17 CONV 3,000 LCHV 208 3 208.00 0.00 
C-17 CONV 3,000 LCHV 101 6 0.00 -101.00 
C-17 CONV 3,000 LCHV 340 2 294.45 170.00 
C-130H CONV 2,000 LCHV  
C-17 CONV 2,000 LCHV 0 0 0.00 0.00 
C-17 CONV 1,000 LCHV 221 8 -191.39 -110.50 
C-17 CONV 2,000 LCHV 120 7 -60.00 -103.92 
C-17 CONV 2,000 LCHV 76 3 76.00 0.00 
C-17 CONV 2,000 LCHV 225 5 112.50 -194.86 
C-130J CONV 2,000 LCHV 150 12 0.00 150.00 
C-17 CONV 2,000 LCHV 174 9 -174.00 0.00 
C-130H CONV 1,000 LCHV 91 12 0.00 91.00 
C-17 CONV 3,000 LCHV 361 12 0.00 361.00 
C-17 CONV 3,000 LCHV 399 2 345.54 199.50 
C-17 CONV 2,000 LCHV 88 9 -88.00 0.00 
C-17 CONV 3,000 LCHV 288 3 288.00 0.00 
C-17 CONV 2,100 LCHV 67 9 -67.00 0.00 
C-17 CONV 3,000 LCHV x450 9  
C-17 CONV 2,100 LCHV 41 9 -41.00 0.00 
C-17 CONV 2,100 LCHV 110 7 -55.00 -95.26 
C-130H CONV 8,400 LCHV  
C-17 CONV 2,000 LCHV 64 2 55.43 32.00 
C-17 CONV 2,100 LCHV 187 6 0.00 -187.00 
C-17 CONV 2,100 LCHV 53 11 -26.50 45.90 
C-130J CONV 2,000 LCHV 60 12 0.00 60.00 
C-17 CONV 3,000 LCHV 54 3 54.00 0.00 
C-17 CONV 3,000 LCHV X X  
C-130H CONV 1,000 LCHV  
C-130J CONV 2,000 LCHV 50 12 0.00 50.00 
C-17 CONV 3,000 LCHV  
C-17 CONV 3,000 LCHV  
C-17 CONV 3,000 LCHV 181 11 -90.50 156.75 
C-17 CONV 3,000 LCHV  
C-17 CONV 3,000 LCHV  
C-130J CONV 2,000 LCHV 100 12 0.00 100.00 
C-17 CONV 3,000 LCHV  
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AIRCRAFT TYPE ALT CHUTES DISTANCE CLOCK X Y 
C-130H LCLA 500 LCLA 68 6 0.00 -68.00 
C-130H LCLA 300 LCLA 100 12 0.00 100.00 
C-130H LCLA 300 LCLA 88 9 -88.00 0.00 
C-130H LCLA 300 LCLA     

C-130H LCLA 300 LCLA  
C-130H LCLA 300 LCLA 50 12 0.00 50.00 
C-130H LCLA 300 LCLA x188 12  
C-130H LCLA 300 LCLA 75 12 0.00 75.00 
C-130H LCLA 300 LCLA 62 1 31.00 53.69 
C-130H LCLA 300 LCLA x406 6  
C-130H LCLA 300 LCLA  
C-130H LCLA 300 LCLA 0 0 0.00 0.00 
C-130H LCLA 300 LCLA 110 6 0.00 -110.00 
C-130H LCLA 300 LCLA 38 6 0.00 -38.00 
C-130H LCLA 300 LCLA 0 0 0.00 0.00 
C-130H LCLA 300 LCLA 0  
C-130H LCLA 300 LCLA 54 0 0.00 54.00 
C-130H CONV 300 LCLA 0 0 0.00 0.00 
C-130H CONV 300 LCLA 66 2 57.16 33.00 
C-130H CONV 300 LCLA 180 12 0.00 180.00 
C-130H CONV 300 LCLA 55 3 55.00 0.00 
C-130H LCLA 300 LCLA 0 0 0.00 0.00 
C-130H CONV 1,500 LCLA 0 0 0.00 0.00 
C-130H LCLA 300 LCLA 70 3 70.00 0.00 
C-130H LCLA 300 LCLA 0 0 0.00 0.00 
C-130H LCLA 300 LCLA 0 0 0.00 0.00 
C-130H CONV 1,500 LCLV 0 0 0.00 0.00 
C-130H CONV 2,500 LCLV 377 3 377.00 0.00 
C-130H CONV 1,500 LCLV x675 6  
C-17 CONV 1,500 LCLV 168 1 84.00 145.49 
C-17 CONV 1,800 LCLV 168 5 84.00 -145.49 
C-130J CONV 1,500 LCLV 139 6 0.00 -139.00 
C-130J CONV 1,600 LCLV 25 12 0.00 25.00 
C-130H CONV 1,500 LCLV 250 3 250.00 0.00 
C-17 CONV 1,500 LCLV 93 7 -46.50 -80.54 
C-17 CONV 1,500 LCLV 350 12 0.00 350.00 
C-17 CONV 1,500 LCLV  
C-17 CONV 1,500 LCLV 90 6 0.00 -90.00 
C-17 CONV 3,000 LCLV 250 6 0.00 -250.00 
C-130H CONV 1,000 LCLV 85 1 42.50 73.61 
C-130H CONV 1,000 LCLV 230 7 -115.00 -199.19 
C-130H CONV 1,000 LCLV 180 12 0.00 180.00 
C-130H CONV 1,000 LCLV x630 10  
C-17 CONV 1,500 LCLV  
C-17 CONV 3,000 LCLV 400 11 -200.00 346.41 
C-17 CONV 2,000 LCLV 380 4 329.09 -190.00 
C-130H CONV 1,500 LCLV 125 5 62.50 -108.25 
C-130H CONV 1,500 LCLV 315 1 157.50 272.80 
C-130H CONV 1,000 LCLV 140 9 -140.00 0.00 
C-130H CONV 1,000 LCLV 225 12 0.00 225.00 
C-130H CONV 1,000 LCLV 65 11 -32.50 56.29 
C-17 CONV 1,000 LCLV 82 3 82.00 0.00 
C-130J CONV 1,000 LCLV  
C-17 CONV 1,000 LCLV 65 5 32.50 -56.29 
C-130H CONV 1,000 LCLV 174 10 -150.69 87.00 
C-17 CONV 1,000 LCLV 170 6 0.00 -170.00 
C-17 CONV 1,000 LCLV 55 12 0.00 55.00 
C-130H CONV 1,000 LCLV 150 12 0.00 150.00 
C-17 CONV 1,000 LCLV 115 7 -57.50 -99.59 
C-130H CONV 1,000 LCLV  
C-17 CONV 1,000 LCLV  
C-130H CONV 1,000 LCLV 85 10 -73.61 42.50 
C-130J CONV 1,000 LCLV  
C-130J CONV 1,000 LCLV  
C-130H CONV 1,000 LCLV 164 6 0.00 -164.00 
C-17 CONV 3,000 LCLV  
C-130H CONV 1,000 LCLV 300 3 300.00 0.00 
C-130H CONV 1,500 LCLV  
C-17 CONV 1,500 LCLV x381 6  
C-17 CONV 3,000 LCLV 2 0.00 0.00 
C-130J CONV 3,000 LCLV 0 0 0.00 0.00 
C-130H CONV 1,000 LCLV 0 0 0.00 0.00 
C-130H CONV 1,000 LCLV 28 12 0.00 28.00 
C-17 CONV 1,000 LCLV 72 6 0.00 -72.00 
C-130H CONV 1,000 LCLV 112 9 -112.00 0.00 
C-130H CONV 1,000 LCLV 664 12 0.00 664.00 
C-17 CONV 2,200 LCLV 74 5 37.00 -64.09 
C-130H CONV 2,000 LCLV  
C-17 CONV 1,000 LCLV 30 6 0.00 -30.00 
C-17 CONV 1,000 LCLV 55 5 27.50 -47.63 
C-17 CONV 2,600 LCLV x324 6  
C-130H CONV 1,000 LCLV 192 3 192.00 0.00 
C-17 CONV 3,000 LCLV x440 10  
C-130H CONV 1,000 LCLV 66 6 0.00 -66.00 
C-130H LCLA 500 LCLV 60 1 30.00 51.96 
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AIRCRAFT TYPE ALT CHUTES DISTANCE CLOCK X Y 
C-130J CONV 1,500 LCLV  
C-17 CONV 1,000 LCLV 189 6 0.00 -189.00 
C-17 CONV 2,100 LCLV 70 6 0.00 -70.00 
C-17 CONV 1,000 LCLV x202 12  
C-17 CONV 1,000 LCLV 220 12 0.00 220.00 
C-130H CONV 1,000 LCLV 31 6 0.00 -31.00 
C-130H CONV 1,500 LCLV 70 9 -70.00 0.00 

C-130J CONV 1,000 LCLV  
C-130H CONV 1,000 LCLV  
C-17 CONV 1,000 LCLV  
C-130H CONV 1,000 LCLV  
C-130H CONV 3,000 LCLV 382 6 0.00 -382.00 
C-130J CONV 1,000 LCLV  
C-17 CONV 1,000 LCLV  
C-130J CONV 1,500 LCLV  
C-130H CONV 1,000 LCLV 150 4 129.90 -75.00 
C-17 CONV 1,000 LCLV 167 1 83.50 144.63 
C-130H CONV 1,000 LCLV 72 1 36.00 62.35 
C-130J CONV 1,500 LCLV 200 1 100.00 173.21 
C-130J CONV 1,000 LCLV 440 6 0.00 -440.00 
C-130H CONV 1,000 LCLV 20 12 0.00 20.00 
C-17 CONV 1,500 LCLV  
C-130J CONV 1,000 LCLV 104 8 -90.07 -52.00 
C-130H CONV 1,500 LCLV 74 10 -64.09 37.00 
C-17 CONV 2,100 LCLV 317 11 -158.50 274.53 
C-17 CONV 1,000 LCLV 150 5 75.00 -129.90 
C-130J CONV 2,000 LCLV 218 12 0.00 218.00 
C-17 CONV 1,000 LCLV 165 12 0.00 165.00 
C-130H CONV 1,000 LCLV  
C-130H CONV 1,000 LCLV 150 6 0.00 -150.00 
C-130H CONV 1,000 LCLV 30 5 15.00 -25.98 
C-17 CONV 2,100 LCLV 255 2 220.84 127.50 
C-17 CONV 1,000 LCLV 76 5 38.00 -65.82 
C-17 CONV 2,100 LCLV 50 3 50.00 0.00 
C-130J CONV 1,000 LCLV 32 6 0.00 -32.00 
C-130J CONV 1,000 LCLV 143 12 0.00 143.00 
C-130H CONV 1,000 LCLV 245 11 -122.50 212.18 
C-17 CONV 2,100 LCLV 226 1 113.00 195.72 
C-130H CONV 1,500 LCLV  
C-17 CONV 1,000 LCLV 155 12 0.00 155.00 
C-130H CONV 1,500 LCLV  
C-130H CONV 1,000 LCLV  
C-17 CONV 1,000 LCLV  
C-130H CONV 1,000 LCLV 100 12 0.00 100.00 
C-17 CONV 3,000 LCLV 375 9 -375.00 0.00 
C-130H CONV 1,000 LCLV 176 12 0.00 176.00 
C-130H CONV 2,000 LCLV 100 2 86.60 50.00 
C-130J CONV 1,000 LCLV 331 2 286.65 165.50 
C-130H CONV 1,000 LCLV 65 3 65.00 0.00 
C-17 CONV 1,000 LCLV 83 7 -41.50 -71.88 
C-17 CONV 1,500 LCLV 88 9 -88.00 0.00 
C-17 CONV 1,000 LCLV 53 1 26.50 45.90 
C-17 CONV 1,000 LCLV 110 7 -55.00 -95.26 
C-130H CONV 1,000 LCLV 100 3 100.00 0.00 
C-17 CONV 3,000 LCLV 0 0 0.00 0.00 
C-130H CONV 1,000 LCLV 336 1 168.00 290.98 
C-130H CONV 1,500 LCLV 85 10 -73.61 42.50 
C-17 CONV 3,000 LCLV 277 10 -239.89 138.50 
C-17 CONV 1,000 LCLV 263 12 0.00 263.00 
C-130H CONV 1,500 LCLV x238 6  
C-17 CONV 2,800 LCLV x68 6  
C-130H CONV 1,000 LCLV 317 1 158.50 274.53 
C-17 CONV 1,000 LCLV 78 7 -39.00 -67.55 
C-17 CONV 1,000 LCLV 120 6 0.00 -120.00 
C-130H CONV 1,000 LCLV 100 3 100.00 0.00 
C-17 CONV 3,000 LCLV 320 11 -160.00 277.13 
C-130H CONV 1,000 LCLV 128 1 64.00 110.85 
C-130H CONV 1,000 LCLV 521 12 0.00 521.00 
C-17 CONV 1,500 LCLV x235 6  
C-130H CONV 1,000 LCLV 63 3 63.00 0.00 
C-17 CONV 1,000 LCLV 28 6 0.00 -28.00 
C-17 CONV 1,000 LCLV 225 2 194.86 112.50 
C-130H CONV 3,000 LCLV 197 11 -98.50 170.61 
C-17 CONV 1,000 LCLV  
C-130H CONV 1,000 LCLV 168 12 0.00 168.00 
C-17 CONV 1,000 LCLV 75 7 -37.50 -64.95 
C-17 CONV 1,000 LCLV 33 2 28.58 16.50 
C-17 CONV 1,000 LCLV 161 3 161.00 0.00 
C-130H CONV 2,500 LCLV 191 10 -165.41 95.50 
C-17 CONV 1,500 LCLV 325 12 0.00 325.00 
C-17 CONV 2,000 LCLV  
C-130H CONV 1,000 LCLV 260 3 260.00 0.00 
C-17 CONV 2,100 LCLV 313 3 313.00 0.00 
C-17 CONV 1,000 LCLV 108 2 93.53 54.00 
C-17 CONV 1,000 LCLV 146 12 0.00 146.00 
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AIRCRAFT TYPE ALT CHUTES DISTANCE CLOCK X Y 
C-130J CONV 1,500 LCLV 242 5 121.00 -209.58 
C-17 CONV 1,000 LCLV 75 7 -37.50 -64.95 
C-130J CONV 1,000 LCLV 112 3 112.00 0.00 
C-130H CONV 1,000 LCLV 127 6 0.00 -127.00 
C-130J CONV 1,000 LCLV 86 4 74.48 -43.00 
C-130H CONV 1,500 LCLV 16 7 -8.00 -13.86 
C-17 CONV 1,000 LCLV 194 6 0.00 -194.00 
C-130J CONV 1,000 LCLV 100 10 -86.60 50.00 
C-130H CONV 1,000 LCLV 82 2 71.01 41.00 
C-130J CONV 2,000 LCLV 148 12 0.00 148.00 

C-130J CONV 1,000 LCLV 258 12 0.00 258.00 
C-17 CONV 1,000 LCLV 46 3 46.00 0.00 
C-17 CONV 1,000 LCLV 48 9 -48.00 0.00 
C-130H CONV 1,000 LCLV 182 1 91.00 157.62 
C-130J CONV 2,100 LCLV 0 0 0.00 0.00 
C-130H CONV 1,000 LCLV 139 3 139.00 0.00 
C-130H CONV 1,500 LCLV 202 2 174.94 101.00 
C-17 CONV 1,500 LCLV 107 8 -92.66 -53.50 
C-17 CONV 1,000 LCLV 235 12 0.00 235.00 
C-130J CONV 2,000 LCLV 61 1 30.50 52.83 
C-130H CONV 3,000 LCLV 359 11 -179.50 310.90 
C-17 CONV 1,000 LCLV 31 5 15.50 -26.85 
C-17 CONV 1,000 LCLV 90 6 0.00 -90.00 
C-130H CONV 1,000 LCLV 115 2 99.59 57.50 
C-130H CONV 1,000 LCLV 152 8 -131.64 -76.00 
C-17 CONV 1,500 LCLV x290 6  
C-130H CONV 1,000 LCLV 141 9 -141.00 0.00 
C-130J CONV 1,000 LCLV 188 12 0.00 188.00 
C-17 CONV 1,000 LCLV 178 3 178.00 0.00 
C-17 CONV 1,000 LCLV 100 6 0.00 -100.00 
C-17 CONV 1,000 LCLV 144 6 0.00 -144.00 
C-17 CONV 1,000 LCLV 6 0.00 0.00 
C-130J CONV 1,000 LCLV 93 9 -93.00 0.00 
C-17 CONV 1,000 LCLV 105 8 -90.93 -52.50 
C-17 CONV 1,500 LCLV 101 9 -101.00 0.00 
C-130H CONV 3,000 LCLV 500 11 -250.00 433.01 
C-17 CONV 1,000 LCLV 25 6 0.00 -25.00 
C-17 CONV 1,000 LCLV 219 12 0.00 219.00 
C-17 CONV 1,000 LCLV 86 12 0.00 86.00 
C-17 CONV 1,500 LCLV 40 7 -20.00 -34.64 
C-17 CONV 1,000 LCLV 167 9 -167.00 0.00 
C-130J CONV 1,000 LCLV 139 8 -120.38 -69.50 
C-17 CONV 3,000 LCLV 720 5 360.00 -623.54 
C-17 CONV 1,000 LCLV 180 9 -180.00 0.00 
C-130H CONV 3,000 LCLV 272 12 0.00 272.00 
C-17 CONV 1,000 LCLV 117 6 0.00 -117.00 
C-17 CONV 1,000 LCLV 53 7 -26.50 -45.90 
C-130J CONV 1,000 LCLV 144 9 -144.00 0.00 
C-17 CONV 2,500 LCLV 0 0 0.00 0.00 
C-17 CONV 1,000 LCLV 337 5 168.50 -291.85 
C-130H CONV 1,000 LCLV 387 12 0.00 387.00 
C-130H CONV 1,500 LCLV 211 10 -182.73 105.50 
C-130J CONV 1,000 LCLV 263 4 227.76 -131.50 
C-130H CONV 1,000 LCLV x548 9  
C-17 CONV 1,000 LCLV x501 6  
C-17 CONV 1,500 LCLV 185 4 160.21 -92.50 
C-130H CONV 1,000 LCLV 0  
C-130H CONV 3,000 LCLV 218 10 -188.79 109.00 
C-17 CONV 2,500 LCLV  
C-130H CONV 1,000 LCLV  
C-17 CONV 1,000 LCLV 460 12 0.00 460.00 
C-17 CONV 1,000 LCLV 0 0 0.00 0.00 
C-130H CONV 2,400 LCLV 214 12 0.00 214.00 
C-130J CONV 1,000 LCLV 130 3 130.00 0.00 
C-130H CONV 1,000 LCLV 90 12 0.00 90.00 
C-130H CONV 1,000 LCLV 115 1 57.50 99.59 
C-130H CONV 1,000 LCLV 115 1 57.50 99.59 
Unknown CONV 1,000 LCLV  
C-130H CONV 1,000 LCLV 24 1 12.00 20.78 
C-17 CONV 1,000 LCLV 250 9 -250.00 0.00 
C-17 CONV 1,500 LCLV 260 9 -260.00 0.00 
C-130H CONV 1,000 LCLV 0 0 0.00 0.00 
C-17 CONV 1,500 LCLV  
C-130H CONV 1,000 LCLV 218 12 0.00 218.00 
C-130H CONV 1,500 LCLV 50 12 0.00 50.00 
C-17 CONV 1,000 LCLV 437 3 437.00 0.00 
C-130H CONV 1,000 LCLV 105 3 105.00 0.00 
C-17 CONV 1,500 LCLV x652 6  
C-17 CONV 1,500 LCLV 222 8 -192.26 -111.00 
C-17 CONV 1,000 LCLV 178  
C-130H CONV 1,000 LCLV 80 8 -69.28 -40.00 
C-130H CONV 1,500 LCLV x550 5  
C-130H CONV 1,500 LCLV x710 4  
C-130J CONV 1,500 LCLV 550 6 0.00 -550.00 
C-17 CONV 3,000 LCLV 50 7 -25.00 -43.30 
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AIRCRAFT TYPE ALT CHUTES DISTANCE CLOCK X Y 
C-130H CONV 1,000 LCLV 8 20  
C-130J CONV 3,000 LCLV 345 6 0.00 -345.00 
C-130H CONV 1,500 LCLV 294 11 -147.00 254.61 
C-17 CONV 3,000 LCLV 533 7 -266.50 -461.59 
C-130H CONV 1,000 LCLV x6000 6  
C-17 CONV 1,500 LCLV 35 3 35.00 0.00 
C-130J CONV 1,000 LCLV 5 3 5.00 0.00 
C-17 CONV 1,000 LCLV  
C-17 CONV 1,000 LCLV 0 0 0.00 0.00 
C-17 CONV 1,500 LCLV 81 2 70.15 40.50 
C-130J CONV 1,000 LCLV 199 11 -99.50 172.34 
C-130H CONV 1,000 LCLV 199 11 -99.50 172.34 
C-17 CONV 1,000 LCLV     

C-130H CONV 1,000 LCLV  
C-17 CONV 1,500 LCLV 300 7 -150.00 -259.81 
C-130H CONV 1,000 LCLV 150 12 0.00 150.00 
C-130H CONV 1,000 LCLV x800 12  
C-130J CONV 1,000 LCLV 115 2 99.59 57.50 
C-130J CONV 1,500 LCLV 50 12 0.00 50.00 
C-17 CONV 1,000 LCLV 20 3 20.00 0.00 
C-130J CONV 1,000 LCLV 30 3 30.00 0.00 
C-130H CONV 1,000 LCLV 25 3 25.00 0.00 
C-130H CONV 1,000 LCLV  
C-17 CONV 1,500 LCLV 185 2 160.21 92.50 
C-130H CONV 1,000 LCLV 568 5 284.00 -491.90 
C-130H CONV 3,000 LCLV 38 3 38.00 0.00 
C-130H CONV 3,000 LCLV 38 11 -19.00 32.91 
C-17 CONV 1,500 LCLV 72 12 0.00 72.00 
C-130J CONV 1,000 LCLV 18 11 -9.00 15.59 
C-17 CONV 1,500 LCLV 330 11 -165.00 285.79 
C-130H CONV 1,000 LCLV 18 11 -9.00 15.59 
C-130H CONV 1,000 LCLV 430 6 0.00 -430.00 
C-130H CONV 1,000 LCLV 260 1 130.00 225.17 
C-130H CONV 1,500 LCLV 0 0 0.00 0.00 
C-130H CONV 1,000 LCLV 58 7 -29.00 -50.23 
C-17 CONV 2,000 LCLV 180 3 180.00 0.00 
C-130H CONV 1,500 LCLV 300 11 -150.00 259.81 
C-130H CONV 1,500 LCLV 380 2 329.09 190.00 
C-130H CONV 1,500 LCLV 150 6 0.00 -150.00 
C-130J CONV 3,000 LCLV  
C-130J CONV 3,000 LCLV 350 9 -350.00 0.00 
C-130H CONV 1,500 LCLV 150 4 129.90 -75.00 
C-130J CONV 1,500 LCLV 142 2 122.98 71.00 
C-130J CONV 1,500 LCLV 152 11 -76.00 131.64 
C-130J CONV 1,500 LCLV 420 12 0.00 420.00 
C-130H CONV 1,000 LCLV x686 2  
C-130H CONV 1,000 LCLV 285 12 0.00 285.00 
C-130H CONV 1,000 LCLV 80 6 0.00 -80.00 
C-130H CONV 1,500 LCLV 135 1 67.50 116.91 
C-130H CONV 1,000 LCLV 555 7 -277.50 -480.64 
C-17 CONV 1,500 LCLV  
C-130H CONV 1,000 LCLV  
C-130H CONV 1,000 LCLV 212 12 0.00 212.00 
C-130H CONV 1,000 LCLV x1239 10  
C-130H CONV 1,000 LCLV  
C-130J CONV 2,000 LCLV 30 9 -30.00 0.00 
C-17 CONV 3,000 LCLV 90 9 -90.00 0.00 
C-130J CONV 1,000 LCLV 309 3 309.00 0.00 
C-130J CONV 1,000 LCLV 235 12 0.00 235.00 
C-17 CONV 3,000 LCLV 568 8 -491.90 -284.00 
C-130H CONV 1,000 LCLV 0 0 0.00 0.00 
C-130H CONV 1,000 LCLV 80 12 0.00 80.00 
C-130J CONV 1,000 LCLV 343 2 297.05 171.50 
C-17 CONV 3,000 LCLV 171 11 -85.50 148.09 
C-17 CONV 3,000 LCLV 320 11 -160.00 277.13 
C-17 CONV 1,500 LCLV 165 9 -165.00 0.00 
C-130H CONV 1,000 LCLV 187 3 187.00 0.00 
C-130J CONV 1,000 LCLV  
C-17 CONV 1,500 LCLV 703 6 0.00 -703.00 
C-130J CONV 1,000 LCLV 53 6 0.00 -53.00 
C-17 CONV 3,000 LCLV 287 8 -248.55 -143.50 
C-130J CONV 1,000 LCLV 194 11 -97.00 168.01 
C-130H CONV 1,500 LCLV 125 3 125.00 0.00 
C-130H CONV 1,000 LCLV 0 0 0.00 0.00 
C-130J CONV 1,000 LCLV  
C-17 CONV 1,500 LCLV 216 5 108.00 -187.06 
C-130H CONV 1,000 LCLV 129 12 0.00 129.00 
C-17 CONV 1,000 LCLV 131 11 -65.50 113.45 
C-130J CONV 2,500 LCLV 191 9 -191.00 0.00 
C-17 CONV 1,000 LCLV 115 12 0.00 115.00 
C-130H CONV 1,000 LCLV 200 9 -200.00 0.00 
C-17 CONV 1,500 LCLV 60 3 60.00 0.00 
C-130H CONV 1,000 LCLV  
C-130J CONV 1,000 LCLV 135 12 0.00 135.00 
C-17 CONV 1,000 LCLV 242 12 0.00 242.00 



81 
 

AIRCRAFT TYPE ALT CHUTES DISTANCE CLOCK X Y 
C-130H CONV 1,000 LCLV 316 4 273.66 -158.00 
C-130J CONV 1,000 LCLV 80 1 40.00 69.28 
C-17 CONV 1,000 LCLV 663 6 0.00 -663.00 
C-130J CONV 1,000 LCLV 161 3 161.00 0.00 
C-17 CONV 2,000 LCLV  
C-17 CONV 1,000 LCLV 152 2 131.64 76.00 
C-130H CONV 1,000 LCLV 382 12 0.00 382.00 
C-130J CONV 1,000 LCLV 71 11 -35.50 61.49 
C-17 CONV 1,500 LCLV 235 2 203.52 117.50 
C-130J CONV 1,000 LCLV 278 2 240.76 139.00 
C-17 CONV 1,000 LCLV 106 3 106.00 0.00 
C-130H CONV 1,500 LCLV  
C-130H CONV 1,500 LCLV 600 12 0.00 600.00 
C-130H CONV 1,500 LCLV 100 12 0.00 100.00 
C-17 CONV 2,000 LCLV 239 1 119.50 206.98 
C-130J CONV 1,000 LCLV     

C-17 CONV 1,000 LCLV 60 6 0.00 -60.00 
C-130J CONV 1,000 LCLV 435 6 0.00 -435.00 
C-130J CONV 1,000 LCLV 5 3 5.00 0.00 
C-130J CONV 1,500 LCLV 256 12 0.00 256.00 
C-17 CONV 1,000 LCLV 0 12 0.00 0.00 
C-17 CONV 1,500 LCLV 181 11 -90.50 156.75 
C-130J CONV 1,000 LCLV 148 1 74.00 128.17 
C-17 CONV 3,000 LCLV  
C-17 CONV 2,000 LCLV  
C-130H CONV 1,000 LCLV 89 5 44.50 -77.08 
C-130J CONV 1,000 LCLV 104 7 -52.00 -90.07 
C-130J CONV 1,000 LCLV 258 9 -258.00 0.00 
C-130H CONV 1,000 LCLV 50 6 0.00 -50.00 
C-130J CONV 1,000 LCLV 250 7 -125.00 -216.51 
C-130J CONV 1,000 LCLV 291 7 -145.50 -252.01 
C-130J CONV 1,000 LCLV 90 12 0.00 90.00 
C-17 CONV 1,500 LCLV 56 3 56.00 0.00 
C-130H CONV 1,000 LCLV  
C-17 CONV 2,151 LCLV 296 12 0.00 296.00 
C-17 CONV 1,500 LCLV 217 2 187.93 108.50 
C-17 CONV 1,000 LCLV 152 10 -131.64 76.00 
C-130J CONV 1,000 LCLV  
C-130H CONV 3,000 LCLV 325 6 0.00 -325.00 
C-130J CONV 1,000 LCLV  
C-130J CONV 1,000 LCLV  
C-130H CONV 1,000 LCLV 156 3 156.00 0.00 
C-130H CONV 1,000 LCLV 159 3 159.00 0.00 
C-17 CONV 1,000 LCLV 223 12 0.00 223.00 
C-130H CONV 1,000 LCLV  
C-130H CONV 1,000 LCLV 324 2 280.59 162.00 
C-17 CONV 2,151 LCLV  
C-130J CONV 1,500 LCLV x465 x1  
C-17 CONV 1,000 LCLV 402 6 0.00 -402.00 
C-130H CONV 1,000 LCLV 410 3 410.00 0.00 
C-17 CONV 1,000 LCLV 150  
C-130H CONV 3,000 LCLV 100 12 0.00 100.00 
C-130J CONV 1,086 LCLV 212 7 -106.00 -183.60 
C-17 CONV 3,000 LCLV  
C-130H CONV 1,500 LCLV 63 7 -31.50 -54.56 
C-130J CONV 1,286 LCLV 130 7 -65.00 -112.58 
C-130J CONV 1,286 LCLV 48 3 48.00 0.00 
C-130H CONV 1,500 LCLV 69 3 69.00 0.00 
C-17 CONV 1,000 LCLV 114 7 -57.00 -98.73 
C-130H CONV 3,000 LCLV  
C-130H CONV 1,000 LCLV 207 3 207.00 0.00 
C-130H CONV 1,000 LCLV 10 3 10.00 0.00 
C-130H CONV 1,000 LCLV 433 5 216.50 -374.99 
C-17 CONV 3,000 LCLV 116 3 116.00 0.00 
C-130H CONV 1,000 LCLV 117 3 117.00 0.00 
C-130J CONV 1,000 LCLV 135 12 0.00 135.00 
C-130H CONV 1,000 LCLV 0 3 0.00 0.00 
C-17 CONV 1,000 LCLV 122 9 -122.00 0.00 
C-130J CONV 1,000 LCLV 0 0 0.00 0.00 
C-130J CONV 1,000 LCLV 165 6 0.00 -165.00 
C-130H CONV 1,000 LCLV  
C-17 CONV 1,500 LCLV 107 11 -53.50 92.66 
C-17 CONV 1,000 LCLV 84 10 -72.75 42.00 
C-130H CONV 1,000 LCLV 61 8 -52.83 -30.50 
C-130H CONV 1,000 LCLV 10 12 0.00 10.00 
C-130H CONV 1,000 LCLV  
C-130H CONV 1,000 LCLV 0 0 0.00 0.00 
C-130H CONV 1,000 LCLV 0 0 0.00 0.00 
C-17 CONV 1,500 LCLV 167 9 -167.00 0.00 
C-17 CONV 1,000 LCLV 248 4 214.77 -124.00 
C-130H CONV 1,000 LCLV 437 5 218.50 -378.45 
C-130H CONV 1,000 LCLV 0 0 0.00 0.00 
C-17 CONV 1,000 LCLV 112 8 -96.99 -56.00 
C-130J CONV 1,000 LCLV 98 9 -98.00 0.00 
C-17 CONV 1,500 LCLV 146 5 73.00 -126.44 
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AIRCRAFT TYPE ALT CHUTES DISTANCE CLOCK X Y 
C-130J CONV 1,000 LCLV 270 1 135.00 233.83 
C-130J CONV 1,000 LCLV 168 6 0.00 -168.00 
C-130J CONV 1,000 LCLV 227 8 -196.59 -113.50 
C-130J CONV 1,000 LCLV 3 12 0.00 3.00 
C-130H CONV 1,000 LCLV 0 0 0.00 0.00 
C-130H CONV 1,000 LCLV 0 0 0.00 0.00 
C-130J CONV 1,000 LCLV 178 12 0.00 178.00 
C-130H CONV 1,000 LCLV 50 3 50.00 0.00 
C-17 CONV 1,500 LCLV 234 6 0.00 -234.00 
C-17 CONV 1,000 LCLV 32 12 0.00 32.00 
C-130J CONV 1,000 LCLV 389 12 0.00 389.00 
C-130H CONV 1,000 LCLV 0 0 0.00 0.00 
C-130H CONV 1,000 LCLV 300 2 259.81 150.00 
C-17 CONV 1,000 LCLV  
C-130H CONV 1,500 LCLV 0 0 0.00 0.00 
C-130H CONV 1,500 LCLV 42 12 0.00 42.00 
C-130H CONV 3,000 LCLV 103 9 -103.00 0.00 
C-17 CONV 1,000 LCLV 0 0 0.00 0.00 
C-130H CONV 1,000 LCLV x598 11  
C-130H CONV 1,000 LCLV 96 2 83.14 48.00 
C-130J CONV 1,000 LCLV 250 3 250.00 0.00 
C-130H CONV 1,000 LCLV 95 7 -47.50 -82.27 

C-130H CONV 1,000 LCLV 24 9 -24.00 0.00 
C-130H CONV 1,000 LCLV 0 0 0.00 0.00 
C-130H CONV 1,000 LCLV 346 10 -299.64 173.00 
C-130J CONV 2,500 LCLV 127 3 127.00 0.00 
C-130H CONV 1,000 LCLV 18 3 18.00 0.00 
C-17 CONV 1,000 LCLV 174 10 -150.69 87.00 
C-17 CONV 1,000 LCLV 289 6 0.00 -289.00 
C-130H CONV 1,000 LCLV 0 0 0.00 0.00 
C-130H CONV 1,000 LCLV 160 2 138.56 80.00 
C-130H CONV 1,000 LCLV 0 0 0.00 0.00 
C-130H CONV 1,500 LCLV 169 6 0.00 -169.00 
C-17 CONV 1,000 LCLV 142 4 122.98 -71.00 
C-17 CONV 1,000 LCLV 152 7 -76.00 -131.64 
C-130H CONV 1,000 LCLV 162 12 0.00 162.00 
C-130J CONV 1,000 LCLV 0 0 0.00 0.00 
C-130J CONV 1,000 LCLV 135 8 -116.91 -67.50 
C-130H CONV 1,000 LCLV 96 10 -83.14 48.00 
C-17 CONV 1,000 LCLV 146 6 0.00 -146.00 
C-17 CONV 1,000 LCLV 212 7 -106.00 -183.60 
C-17 CONV 3,000 LCLV X694 7  
C-17 CONV 1,500 LCLV  
C-130H CONV 1,000 LCLV 145 12 0.00 145.00 
C-17 CONV 1,500 LCLV 193 7 -96.50 -167.14 
C-130H CONV 1,500 LCLV 107 3 107.00 0.00 
C-130H CONV 1,000 LCLV 133 8 -115.18 -66.50 
C-17 CONV 2,151 LCLV 256 8 -221.70 -128.00 
C-130H CONV 1,000 LCLV 294 2 254.61 147.00 
C-17 CONV 1,000 LCLV 133 3 133.00 0.00 
C-130J CONV 1,000 LCLV 114 9 -114.00 0.00 
C-130J CONV 1,000 LCLV 244 12 0.00 244.00 
C-130H CONV 1,000 LCLV 296 2 256.34 148.00 
C-17 CONV 3,000 LCLV 40 11 -20.00 34.64 
C-17 CONV 1,000 LCLV 145 4 125.57 -72.50 
C-130J CONV 1,000 LCLV X560 10  
C-130H CONV 1,000 LCLV  
C-130H CONV 1,500 LCLV 20 4 17.32 -10.00 
C-130H CONV 1,000 LCLV 50 12 0.00 50.00 
C-130H CONV 1,000 LCLV X456 3  
C-17 CONV 2,500 LCLV 132 6 0.00 -132.00 
C-130H CONV 1,000 LCLV 190 2 164.54 95.00 
C-17 CONV 3,000 LCLV 79 9 -79.00 0.00 
C-17 CONV 1,000 LCLV 355 6 0.00 -355.00 
C-17 CONV 3,000 LCLV 615 3 615.00 0.00 
C-130H CONV 1,000 LCLV 190 2 164.54 95.00 
C-130H CONV 3,000 LCLV 105 11 -52.50 90.93 
C-17 CONV 3,000 LCLV 465 12 0.00 465.00 
C-130J CONV 3,000 LCLV 284 8 -245.95 -142.00 
C-130H CONV 3,000 LCLV 123 3 123.00 0.00 
C-130H CONV 1,000 LCLV 42 12 0.00 42.00 
C-17 CONV 3,000 LCLV 77 8 -66.68 -38.50 
C-130J CONV 1,000 LCLV 154 3 154.00 0.00 
C-130J CONV 1,000 LCLV 109 9 -109.00 0.00 
C-17 CONV 3,000 LCLV X956 7  
C-17 CONV 1,000 LCLV 51 9 -51.00 0.00 
C-130H CONV 1,000 LCLV 145 12 0.00 145.00 
C-17 CONV 1,500 LCLV 127 3 127.00 0.00 
C-130H CONV 1,000 LCLV 183 12 0.00 183.00 
C-130H CONV 1,000 LCLV 47 12 0.00 47.00 
C-17 CONV 3,000 LCLV 75 12 0.00 75.00 
C-130J CONV 1,000 LCLV X0 0  
C-17 CONV 1,000 LCLV X669 6  
C-130H CONV 2,000 LCLV 58 3 58.00 0.00 
C-17 CONV 3,000 LCLV X500 9  
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AIRCRAFT TYPE ALT CHUTES DISTANCE CLOCK X Y 
C-130J CONV 1,000 LCLV 228 3 228.00 0.00 
C-17 CONV 1,000 LCLV 111 3 111.00 0.00 
C-130J CONV 1,000 LCLV  
C-130J CONV 1,000 LCLV x0 12  
C-130H CONV 1,000 LCLV 182 11 -91.00 157.62 
C-130H CONV 3,000 LCLV X  
C-130J CONV 1,000 LCLV 0 12 0.00 0.00 
C-130H CONV 1,000 LCLV 192 12 0.00 192.00 
C-17 CONV 1,000 LCLV 111 9 -111.00 0.00 
C-17 CONV 1,500 LCLV 280 10 -242.49 140.00 
C-17 CONV 1,000 LCLV 0 0 0.00 0.00 
C-17 CONV 3,000 LCLV 129 6 0.00 -129.00 
C-130H CONV 1,000 LCLV 0 12 0.00 0.00 
C-130J CONV 1,000 LCLV 207 2 179.27 103.50 
C-130H CONV 3,000 LCLV 346 3 346.00 0.00 
C-17 CONV 1,000 LCLV 150 6 0.00 -150.00 
C-130H CONV 1,000 LCLV 125 9 -125.00 0.00 
C-130H CONV 1,000 LCLV 238 6 0.00 -238.00 
C-130H CONV 2,000 LCLV 0 0 0.00 0.00 
C-130H CONV 3,000 LCLV 366 12 0.00 366.00 
C-130J CONV 1,000 LCLV 150 12 0.00 150.00 
C-130J CONV 1,000 LCLV 145 3 145.00 0.00 
C-130H CONV 1,000 LCLV 0 0 0.00 0.00 
C-130H CONV 1,000 LCLV 0 0 0.00 0.00 
C-130J CONV 1,000 LCLV 223 11 -111.50 193.12 

C-17 CONV 3,000 LCLV 354 7 -177.00 -306.57 
C-130H CONV 3,000 LCLV 484 12 0.00 484.00 
C-130H CONV 2,000 LCLV 275 3 275.00 0.00 
C-17 CONV 2,000 LCLV 115 3 115.00 0.00 
C-130H CONV 1,000 LCLV 342 12 0.00 342.00 
C-17 CONV 1,500 LCLV 72 12 0.00 72.00 
C-130J CONV 1,000 LCLV  
C-17 CONV 1,500 LCLV 132 6 0.00 -132.00 
C-17 CONV 3,000 LCLV 175 9 -175.00 0.00 
C-130H CONV 3,000 LCLV X900 X  
C-130H CONV 3,000 LCLV 714 9 -714.00 0.00 
C-130H CONV 1,000 LCLV 430 8 -372.39 -215.00 
C-130H CONV 1,000 LCLV 0 0 0.00 0.00 
C-17 CONV 1,000 LCLV 35 9 -35.00 0.00 
C-17 CONV 3,000 LCLV 220 12 0.00 220.00 
C-17 CONV 1,500 LCLV 53 12 0.00 53.00 
C-17 CONV 1,000 LCLV 216 6 0.00 -216.00 
C-130J CONV 1,000 LCLV 0 0 0.00 0.00 
C-130J CONV 1,000 LCLV 0 12 0.00 0.00 
C-130J CONV 3,000 LCLV X1019 12  
C-17 CONV 3,000 LCLV X676 12  
C-130H CONV 1,000 LCLV 80 1 40.00 69.28 
C-17 CONV 1,000 LCLV  
C-17 CONV 3,000 LCLV 245 12 0.00 245.00 
C-130J CONV 1,000 LCLV X396 9  
C-130J CONV 1,000 LCLV 0 0 0.00 0.00 
C-130H CONV 1,000 LCLV 0 0 0.00 0.00 
C-130H CONV 1,000 LCLV 0 0 0.00 0.00 
C-130H CONV 1,000 LCLV 119 12 0.00 119.00 
C-17 CONV 1,500 LCLV 226 6 0.00 -226.00 
C-17 CONV 2,100 LCLV 260 6 0.00 -260.00 
C-17 CONV 1,500 LCLV 57 7 -28.50 -49.36 
C-130H CONV 1,000 LCLV 300 12 0.00 300.00 
C-130J CONV 1,000 LCLV  
C-130J CONV 1,000 LCLV X438 6  
C-17 CONV 1,500 LCLV X X  
C-17 CONV 3,000 LCLV 99 3 99.00 0.00 
C-17 CONV 1,000 LCLV  
C-130H CONV 1,000 LCLV 121 12 0.00 121.00 
C-17 CONV 1,000 LCLV  
C-17 CONV 2,000 LCLV  
C-130J CONV 1,000 LCLV 0 0 0.00 0.00 
C-17 CONV 1,000 LCLV  
C-130J CONV 1,000 LCLV 326 11 -163.00 282.32 
C-130H CONV 1,000 LCLV 203 11 -101.50 175.80 
C-130H CONV 2,000 LCLV  
C-17 CONV 2,000 LCLV  
C-17 CONV 1,500 LCLV  
C-17 CONV 1,500 LCLV  
C-130J CONV 1,000 LCLV X X  
C-17 CONV 1,500 LCLV  
C-17 CONV 1,000 LCLV  
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Appendix B: Airdrop Collateral Damage Risk Estimator 
 

VBA Program: 
 
Module 1: 
Dim i As Integer 
Dim j As Integer 
 
Sub populate() 
 
k = 1 
highi = Round(Cells(9, 3), 2) 
lowi = Round(Cells(9, 2), 2) 
highj = Round(Cells(10, 3), 2) 
lowj = Round(Cells(10, 2), 2) 
 
 
 
For i = 50 To 69 
    For j = -70 To -61 
        Cells(1, 2) = i / 100 
        Cells(2, 2) = j / 100 
        Cells(k, 8) = i / 100 
        Cells(k, 9) = j / 100 
        Cells(k, 10) = Cells(7, 2) 
        k = k + 1 
    Next j 
Next i 
 
 
 
 
 
End Sub 
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Module 2: 
Dim collateral(1 To 20, 1 To 6) As Variant 
Dim aimpoint_x As Double 
Dim aimpoint_y As Double 
Dim sigma_x As Double 
Dim sigma_y As Double 
Dim rho As Double 
Dim power As Double 
Dim squaresize As Double 
 
 
Sub cammarano() 
 
Application.ScreenUpdating = False 
 
Sheets("Distribution Parameters").Activate 
aimpoint_x = Cells(2, 2) 
aimpoint_y = Cells(3, 2) 
sigma_x = Cells(4, 2) 
sigma_y = Cells(5, 2) 
rho = Cells(6, 2) 
power = Cells(7, 2) 
stepsize = Cells(8, 2) 
 
Sheets("Collateral Objects").Activate 
numcollateral = 0 
For i = 1 To 20 
    If Cells(i + 1, 2) <> "" Then 
        numcollateral = numcollateral + 1 
    End If 
Next i 
For i = 1 To numcollateral 
    For j = 1 To 5 
        collateral(i, j) = Cells(i + 1, j + 1) 
    Next j 
Next i 
 
For activecollateral = 1 To numcollateral 
    m = 0 
    targetsum = 0 
    Do Until collateral(activecollateral, 1) + m * stepsize + 0.5 * stepsize > 
collateral(activecollateral, 2) 
         
        n = 0 
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        Do Until collateral(activecollateral, 3) + n * stepsize + 0.5 * stepsize > 
collateral(activecollateral, 4) 
            currentpos_x = collateral(activecollateral, 1) + m * stepsize + 0.5 * stepsize 
            currentpos_y = collateral(activecollateral, 3) + n * stepsize + 0.5 * stepsize 
            pdfvalue = power / (2 * 3.1415928 * sigma_x * sigma_y * (1 - rho ^ 2) ^ 0.5) * 
Exp((-1) / (2 * (1 - rho ^ 2)) * ((currentpos_x - aimpoint_x) ^ 2 / sigma_x ^ 2 - 2 * rho * 
(currentpos_x - aimpoint_x) * (currentpos_y - aimpoint_y) / sigma_x / sigma_y + 
(currentpos_y - aimpoint_y) ^ 2 / sigma_y ^ 2)) 
            targetsum = targetsum + pdfvalue 
            n = n + 1 
        Loop 
        m = m + 1 
    Loop 
    collateral(activecollateral, 6) = targetsum 
Next activecollateral 
 
Sheets("Collateral Objects").Activate 
For i = 1 To numcollateral 
    Cells(i + 1, 7) = collateral(i, 6) * stepsize ^ 2 
Next i 
 
Application.ScreenUpdating = False 
 
End Sub 
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Module 3: 
Sub Macro1() 
' 
' Macro1 Macro 
' 
 
' 
    Range("B2:C6").Select 
    ActiveSheet.Shapes.AddChart.Select 
    ActiveChart.SetSourceData Source:=Range("'collateral'!$B$2:$C$6") 
    ActiveChart.ChartType = xlXYScatterLines 
    ActiveChart.PlotArea.Select 
    ActiveSheet.ChartObjects("Chart 2").Activate 
    ActiveChart.Axes(xlCategory).Select 
    ActiveChart.Axes(xlCategory).MinimumScale = -10 
    ActiveChart.Axes(xlCategory).MinimumScale = -100 
    ActiveChart.Axes(xlCategory).MaximumScale = 15 
    ActiveChart.Axes(xlCategory).MaximumScale = 100 
    ActiveSheet.ChartObjects("Chart 2").Activate 
    ActiveChart.PlotArea.Select 
    ActiveSheet.ChartObjects("Chart 2").Activate 
    ActiveChart.Axes(xlValue).Select 
    ActiveChart.Axes(xlValue).MaximumScale = 35 
    ActiveChart.Axes(xlValue).MinimumScale = 0 
    ActiveChart.Axes(xlValue).MinimumScale = 10 
    ActiveChart.Axes(xlValue).MaximumScale = 100 
    ActiveChart.Axes(xlValue).MinimumScale = -100 
End Sub  
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Appendix C. Quad Chart 
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Appendix D: Blue Dart 
 

 Since the early days of aviation the art and science of resupply via airdrop has 

been in a state of constant evolution inspired by mission requirements.  The early lessons 

of aerial resupply at Dien Bien Phu, Khe Sanh, and An Loc during the Vietnam War lead 

to improved equipment and procedures such as the Low Altitude Parachute Extraction 

System, Ground Proximity Extraction System, two stage parachutes, high-velocity 

airdrops, and high-altitude low-opening methods.  These early improvements were just 

the beginning and have culminated in our ultimate achievement in airdrop accuracy to 

date, the GPS-enabled Joint Precision Airdrop System or JPADS.  JPADS has enabled 

airdrops to be conducted in ways and in locations that would not have been possible prior 

to its development.   But there is one problem with JPADS…it’s expensive.  The costs of 

a JPADS airdrop can be prohibitive and as a result most airdrops today are still delivered 

via the less accurate conventional high or low-velocity chutes. 

 These conventional chutes are released at an optimum point over a drop zone to 

maximize the probability that the cargo will land on its desired aimpoint.  These optimal 

points are determined through calculations known as Compute Air Release Points or 

CARPs.  The optimal points developed by these calculations should result in the 

airdropped cargo landing on its intended aimpoint.  Of course, that is the plan.  But what 

happens when the best location to aim an airdrop has a school nearby or a small pond or 

river?  Should the airdrop be executed as planned?  What is the chance that the airdrop 

will strike a collateral object?  What is a safe stand-off distance for receiving personnel?  

This leads us to the research question this thesis aims to answer: How can mission 

planners accurately predict airdrop collateral damage risk? 
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 Through a comprehensive literature review and a thorough examination of a data 

set of real world airdrop scoring data this thesis aims to first describe what theoretical 

airdrop error distribution patterns look like.  After a satisfactory description of the 

theoretical airdrop error distribution pattern is identified it will be used as the basis for a 

rudimentary planning tool.  This tool will be developed for consideration by airdrop 

planners as a method of estimating cargo airdrop error risk.   

 This research first determined that a typical airdrop error pattern develops a 

confidence region that takes on the shape of a symmetrical ellipse.  This elliptical 

confidence region generally has a larger standard deviation along the drop zone or Y axis 

compared to the X axis.  It is also shown that bivariate normal distributions with 

0, 0, , 0 and  &  determined by empirical data are appropriate for 

modeling cargo airdrop errors.  The parameters of these error patterns were determined to 

be affected by chute type and airdrop altitude.  As expected, the empirical data suggest 

that airdrops using the more accurate high-velocity chutes result in a tighter error pattern 

than their low-velocity counterparts.  Also, as expected, airdrops from lower altitudes 

generally display tighter error patterns than higher altitudes when all other factors are 

held constant.  Perhaps not as intuitive, the data suggests that airdrops from different 

aircraft types that use different methods of calculating CARPs do not show significant 

differences in their cargo airdrop error patterns.  These findings suggest that when 

estimating airdrop collateral damage risk the airdrop error patterns differ mainly by 

altitude and chute type and any differences associated with aircraft type should be 

negligible. 
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 This research developed a simple to use spreadsheet tool incorporating the 

bivariate normal distribution pattern to estimate collateral damage risk.  Operators of the 

tool can select the airdrop error distribution parameters provided in the spreadsheet based 

on the mission planning parameters.  After selecting and entering the distribution 

parameters, up to 20 collateral objects can be entered on the spreadsheet.  The 

spreadsheet tool will output the probability of the airdropped cargo striking each of the 

collateral objects as well as the total probability of a collateral object strike.  With the 

output collateral object strike probability, mission planners can make decisions such as 

changing airdrop altitude or chute type or changing the aimpoint in an effort to balance 

the risk of collateral damage, the risk to the aircraft from ground-based threats and the 

risk of not being able to recover the airdropped cargo. 
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